Black Amanda, Hsu Pei-Chun L, Hamonts Kelly E, Clough Tim J, Condron Leo M
Bio Protection Research Centre, Lincoln University, PO Box 85084, Lincoln, Christchurch, 7647, New Zealand.
Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia.
Microb Biotechnol. 2016 May;9(3):381-8. doi: 10.1111/1751-7915.12352. Epub 2016 Mar 2.
Reduction of the potent greenhouse gas nitrous oxide (N(2)O) occurs in soil environments by the action of denitrifying bacteria possessing nitrous oxide reductase (N(2)OR), a dimeric copper (Cu)-dependent enzyme producing environmentally benign dinitrogen (N(2)). We examined the effects of increasing Cu concentrations on the transcription and activity of nitrite reductase (NIR), nitric oxide reductase (NOR) and N2 OR in Pseudomonas stutzeri grown anaerobically in solution over a 10-day period. Gas samples were taken on a daily basis and after 6 days, bacterial RNA was recovered to determine the expression of nirS, norB and nosZ encoding NIR, NOR and N(2)OR respectively. Results revealed that 0.05 mM Cu caused maximum conversion of N(2)O to N(2) via bacterial reduction of N(2)O. As soluble Cu generally makes up less than 0.001% of total soil Cu, extrapolation of 0.05 mg l(-l) soluble Cu would require soils to have a total concentration of Cu in the range of, 150-200 μg g(-1) to maximize the proportion of N(2)O reduced to N(2). Given that many intensively farmed agricultural soils are deficient in Cu in terms of plant nutrition, providing a sufficient concentration of biologically accessible Cu could provide a potentially useful microbial-based strategy of reducing agricultural N(2)O emissions.
在土壤环境中,具有氧化亚氮还原酶(N₂OR)的反硝化细菌可使强效温室气体氧化亚氮(N₂O)减少。N₂OR是一种依赖二聚体铜(Cu)的酶,可产生对环境无害的氮气(N₂)。我们研究了在10天时间内,溶液中厌氧培养的施氏假单胞菌中铜浓度增加对亚硝酸还原酶(NIR)、一氧化氮还原酶(NOR)和N₂OR的转录及活性的影响。每天采集气体样本,6天后提取细菌RNA,以测定分别编码NIR、NOR和N₂OR的nirS、norB和nosZ的表达。结果显示,0.05 mM的铜通过细菌将N₂O还原,使N₂O向N₂的转化达到最大值。由于可溶性铜通常占土壤总铜量的比例不到0.001%,推断0.05 mg l⁻¹的可溶性铜需要土壤中铜的总浓度在150 - 200 μg g⁻¹范围内,才能使N₂O还原为N₂的比例最大化。鉴于许多集约化种植的农业土壤在植物营养方面缺乏铜,提供足够浓度的生物可利用铜可能是一种潜在有用的基于微生物的减少农业N₂O排放的策略。