Suppr超能文献

铜、硝酸盐和碳状况对具有不同生物化学反硝化途径的两种细菌排放一氧化二氮的影响。

The impact of copper, nitrate and carbon status on the emission of nitrous oxide by two species of bacteria with biochemically distinct denitrification pathways.

机构信息

School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.

出版信息

Environ Microbiol. 2012 Jul;14(7):1788-800. doi: 10.1111/j.1462-2920.2012.02789.x. Epub 2012 May 30.

Abstract

Denitrifying bacteria convert nitrate (NO(3) (-) ) to dinitrogen (N(2) ) gas through an anaerobic respiratory process in which the potent greenhouse gas nitrous oxide (N(2) O) is a free intermediate. These bacteria can be grouped into classes that synthesize a nitrite (NO(2) (-) ) reductase (Nir) that is solely dependent on haem-iron as a cofactor (e.g. Paracoccus denitrificans) or a Nir that is solely dependent on copper (Cu) as a cofactor (e.g. Achromobacter xylosoxidans). Regardless of which form of Nir these groups synthesize, they are both dependent on a Cu-containing nitrous oxide reductase (NosZ) for the conversion of N(2) O to N(2) . Agriculture makes a major contribution to N(2) O release and it is recognized that a number of agricultural lands are becoming Cu-limited but are N-rich because of fertilizer addition. Here we utilize continuous cultures to explore the denitrification phenotypes of P. denitrificans and A. xylosoxidans at a range of extracellular NO(3) (-) , organic carbon and Cu concentrations. Quite distinct phenotypes are observed between the two species. Notably, P. denitrificans emits approximately 40% of NO(3) (-) consumed as N(2) O under NO(3) (-) -rich Cu-deficient conditions, while under the same conditions A. xylosoxidans releases approximately 40% of the NO(3) (-) consumed as NO(2) (-) . However, the denitrification phenotypes are very similar under NO(3) (-) -limited conditions where denitrification intermediates do not accumulate significantly. The results have potential implications for understanding denitrification flux in a range of agricultural environments.

摘要

反硝化细菌通过厌氧呼吸过程将硝酸盐(NO₃⁻)转化为氮气(N₂)气体,在此过程中,强效温室气体氧化亚氮(N₂O)是一种自由中间体。这些细菌可以分为两类,一类合成的亚硝酸盐(NO₂⁻)还原酶(Nir)仅依赖血红素铁作为辅助因子(例如脱氮假单胞菌),另一类合成的亚硝酸盐(NO₂⁻)还原酶(Nir)仅依赖铜(Cu)作为辅助因子(例如木糖氧化无色杆菌)。无论这两组合成哪种形式的 Nir,它们都依赖于含铜的氧化亚氮还原酶(NosZ)将 N₂O 转化为 N₂。农业对 N₂O 的释放有重大贡献,人们认识到,由于肥料的添加,许多农业土地正在变得 Cu 限制但富含 N。在这里,我们利用连续培养来探索在一系列细胞外 NO₃⁻、有机碳和 Cu 浓度下,脱氮假单胞菌和木糖氧化无色杆菌的反硝化表型。在这两个物种之间观察到了截然不同的表型。值得注意的是,在富含 NO₃⁻、Cu 缺乏的条件下,脱氮假单胞菌消耗的大约 40%的 NO₃⁻作为 N₂O 排放,而在相同条件下,木糖氧化无色杆菌消耗的大约 40%的 NO₃⁻作为 NO₂⁻释放。然而,在 NO₃⁻有限的条件下,反硝化表型非常相似,此时反硝化中间产物不会显著积累。这些结果对于理解一系列农业环境中的反硝化通量具有潜在意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验