School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
Environ Microbiol. 2012 Jul;14(7):1788-800. doi: 10.1111/j.1462-2920.2012.02789.x. Epub 2012 May 30.
Denitrifying bacteria convert nitrate (NO(3) (-) ) to dinitrogen (N(2) ) gas through an anaerobic respiratory process in which the potent greenhouse gas nitrous oxide (N(2) O) is a free intermediate. These bacteria can be grouped into classes that synthesize a nitrite (NO(2) (-) ) reductase (Nir) that is solely dependent on haem-iron as a cofactor (e.g. Paracoccus denitrificans) or a Nir that is solely dependent on copper (Cu) as a cofactor (e.g. Achromobacter xylosoxidans). Regardless of which form of Nir these groups synthesize, they are both dependent on a Cu-containing nitrous oxide reductase (NosZ) for the conversion of N(2) O to N(2) . Agriculture makes a major contribution to N(2) O release and it is recognized that a number of agricultural lands are becoming Cu-limited but are N-rich because of fertilizer addition. Here we utilize continuous cultures to explore the denitrification phenotypes of P. denitrificans and A. xylosoxidans at a range of extracellular NO(3) (-) , organic carbon and Cu concentrations. Quite distinct phenotypes are observed between the two species. Notably, P. denitrificans emits approximately 40% of NO(3) (-) consumed as N(2) O under NO(3) (-) -rich Cu-deficient conditions, while under the same conditions A. xylosoxidans releases approximately 40% of the NO(3) (-) consumed as NO(2) (-) . However, the denitrification phenotypes are very similar under NO(3) (-) -limited conditions where denitrification intermediates do not accumulate significantly. The results have potential implications for understanding denitrification flux in a range of agricultural environments.
反硝化细菌通过厌氧呼吸过程将硝酸盐(NO₃⁻)转化为氮气(N₂)气体,在此过程中,强效温室气体氧化亚氮(N₂O)是一种自由中间体。这些细菌可以分为两类,一类合成的亚硝酸盐(NO₂⁻)还原酶(Nir)仅依赖血红素铁作为辅助因子(例如脱氮假单胞菌),另一类合成的亚硝酸盐(NO₂⁻)还原酶(Nir)仅依赖铜(Cu)作为辅助因子(例如木糖氧化无色杆菌)。无论这两组合成哪种形式的 Nir,它们都依赖于含铜的氧化亚氮还原酶(NosZ)将 N₂O 转化为 N₂。农业对 N₂O 的释放有重大贡献,人们认识到,由于肥料的添加,许多农业土地正在变得 Cu 限制但富含 N。在这里,我们利用连续培养来探索在一系列细胞外 NO₃⁻、有机碳和 Cu 浓度下,脱氮假单胞菌和木糖氧化无色杆菌的反硝化表型。在这两个物种之间观察到了截然不同的表型。值得注意的是,在富含 NO₃⁻、Cu 缺乏的条件下,脱氮假单胞菌消耗的大约 40%的 NO₃⁻作为 N₂O 排放,而在相同条件下,木糖氧化无色杆菌消耗的大约 40%的 NO₃⁻作为 NO₂⁻释放。然而,在 NO₃⁻有限的条件下,反硝化表型非常相似,此时反硝化中间产物不会显著积累。这些结果对于理解一系列农业环境中的反硝化通量具有潜在意义。