Verghese Ashika, Garner K G, Mattingley Jason B, Dux Paul E
School of Psychology and
School of Psychology and.
J Neurosci. 2016 Mar 2;36(9):2638-45. doi: 10.1523/JNEUROSCI.3410-15.2016.
The ability to perform multiple, concurrent tasks efficiently is a much-desired cognitive skill, but one that remains elusive due to the brain's inherent information-processing limitations. Multitasking performance can, however, be greatly improved through cognitive training (Van Selst et al., 1999, Dux et al., 2009). Previous studies have examined how patterns of brain activity change following training (for review, see Kelly and Garavan, 2005). Here, in a large-scale human behavioral and imaging study of 100 healthy adults, we tested whether multitasking training benefits, assessed using a standard dual-task paradigm, are associated with variability in brain structure. We found that the volume of the rostral part of the left dorsolateral prefrontal cortex (DLPFC) predicted an individual's response to training. Critically, this association was observed exclusively in a task-specific training group, and not in an active-training control group. Our findings reveal a link between DLPFC structure and an individual's propensity to gain from training on a task that taps the limits of cognitive control.
Cognitive "brain" training is a rapidly growing, multibillion dollar industry (Hayden, 2012) that has been touted as the panacea for a variety of disorders that result in cognitive decline. A key process targeted by such training is "cognitive control." Here, we combined an established cognitive control measure, multitasking ability, with structural brain imaging in a sample of 100 participants. Our goal was to determine whether individual differences in brain structure predict the extent to which people derive measurable benefits from a cognitive training regime. Ours is the first study to identify a structural brain marker-volume of left hemisphere dorsolateral prefrontal cortex-associated with the magnitude of multitasking performance benefits induced by training at an individual level.
高效执行多项并发任务的能力是一项备受期待的认知技能,但由于大脑固有的信息处理限制,该技能仍然难以捉摸。然而,通过认知训练可以大大提高多任务处理能力(Van Selst等人,1999年;Dux等人,2009年)。先前的研究已经探讨了训练后大脑活动模式如何变化(综述见Kelly和Garavan,2005年)。在此,我们对100名健康成年人进行了大规模的人类行为和成像研究,测试了使用标准双任务范式评估的多任务训练益处是否与脑结构的变异性相关。我们发现,左侧背外侧前额叶皮质(DLPFC)喙部的体积可预测个体对训练的反应。至关重要的是,这种关联仅在特定任务训练组中观察到,而在主动训练对照组中未观察到。我们的研究结果揭示了DLPFC结构与个体从触及认知控制极限的任务训练中获益倾向之间的联系。
认知“大脑”训练是一个快速发展、价值数十亿美元的产业(Hayden,2012年),被誉为治疗各种导致认知衰退疾病的万灵药。这种训练的一个关键目标过程是“认知控制”。在此,我们将一种既定的认知控制测量方法——多任务处理能力,与100名参与者样本的脑结构成像相结合。我们的目标是确定脑结构的个体差异是否能预测人们从认知训练方案中获得可测量益处的程度。我们的研究是第一项在个体水平上识别出与训练诱导的多任务表现益处大小相关的脑结构标记——左半球背外侧前额叶皮质体积的研究。