Suppr超能文献

信噪比 对 听觉皮层频率处理 的 影响

Effects of Signal-to-Noise Ratio on Auditory Cortical Frequency Processing.

作者信息

Teschner Magnus J, Seybold Bryan A, Malone Brian J, Hüning Jana, Schreiner Christoph E

机构信息

Coleman Memorial Laboratory for Auditory Neuroscience, Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California 94143, and Department of Otolaryngology, Head and Neck Surgery, Hannover Medical School, D-30625 Hannover, Germany.

Coleman Memorial Laboratory for Auditory Neuroscience, Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, California 94143, and.

出版信息

J Neurosci. 2016 Mar 2;36(9):2743-56. doi: 10.1523/JNEUROSCI.2079-15.2016.

Abstract

UNLABELLED

The neural mechanisms that support the robust processing of acoustic signals in the presence of background noise in the auditory system remain largely unresolved. Psychophysical experiments have shown that signal detection is influenced by the signal-to-noise ratio (SNR) and the overall stimulus level, but this relationship has not been fully characterized. We evaluated the neural representation of frequency in rat primary auditory cortex by constructing tonal frequency response areas (FRAs) in primary auditory cortex for different SNRs, tone levels, and noise levels. We show that response strength and selectivity for frequency and sound level depend on interactions between SNRs and tone levels. At low SNRs, jointly increasing the tone and noise levels reduced firing rates and narrowed FRA bandwidths; at higher SNRs, however, increasing the tone and noise levels increased firing rates and expanded bandwidths, as is usually seen for FRAs obtained without background noise. These changes in frequency and intensity tuning decreased tone level and tone frequency discriminability at low SNRs. By contrast, neither response onset latencies nor noise-driven steady-state firing rates meaningfully interacted with SNRs or overall sound levels. Speech detection performance in humans was also shown to depend on the interaction between overall sound level and SNR. Together, these results indicate that signal processing difficulties imposed by high noise levels are quite general and suggest that the neurophysiological changes we see for simple sounds generalize to more complex stimuli.

SIGNIFICANCE STATEMENT

Effective processing of sounds in background noise is an important feature of the mammalian auditory system and a necessary feature for successful hearing in many listening conditions. Even mild hearing loss strongly affects this ability in humans, seriously degrading the ability to communicate. The mechanisms involved in achieving high performance in background noise are not well understood. We investigated the effects of SNR and overall stimulus level on the frequency tuning of neurons in rat primary auditory cortex. We found that the effects of noise on frequency selectivity are not determined solely by the SNR but depend also on the levels of the foreground tones and background noise. These observations can lead to improvement in therapeutic approaches for hearing-impaired patients.

摘要

未标注

在听觉系统中,支持在背景噪声存在下对声学信号进行稳健处理的神经机制在很大程度上仍未得到解决。心理物理学实验表明,信号检测受信噪比(SNR)和总体刺激水平的影响,但这种关系尚未得到充分表征。我们通过构建初级听觉皮层中针对不同信噪比、音调水平和噪声水平的音调频率响应区域(FRA),评估了大鼠初级听觉皮层中频率的神经表征。我们表明,对频率和声音水平的响应强度和选择性取决于信噪比和音调水平之间的相互作用。在低信噪比下,同时提高音调和噪声水平会降低放电率并缩小FRA带宽;然而,在较高信噪比下,提高音调和噪声水平会增加放电率并扩大带宽,这与在没有背景噪声的情况下获得的FRA通常所见的情况相同。在低信噪比下,频率和强度调谐的这些变化会降低音调水平和音调频率辨别能力。相比之下,响应起始潜伏期和噪声驱动的稳态放电率均未与信噪比或总体声音水平产生有意义的相互作用。人类的语音检测性能也被证明取决于总体声音水平和信噪比之间的相互作用。总之,这些结果表明,高噪声水平带来的信号处理困难相当普遍,并表明我们在简单声音中看到的神经生理变化可推广到更复杂的刺激。

意义声明

在背景噪声中有效处理声音是哺乳动物听觉系统的一个重要特征,也是在许多聆听条件下成功听力的必要特征。即使是轻度听力损失也会严重影响人类的这种能力,严重降低沟通能力。实现背景噪声下高性能的机制尚不清楚。我们研究了信噪比和总体刺激水平对大鼠初级听觉皮层中神经元频率调谐的影响。我们发现,噪声对频率选择性的影响不仅取决于信噪比,还取决于前景音调和背景噪声的水平。这些观察结果可导致听力受损患者治疗方法的改进。

相似文献

3
Auditory P300 in Noise in Younger and Older Adults.年轻人和老年人在噪声环境中的听觉P300
J Am Acad Audiol. 2018 Nov/Dec;29(10):909-916. doi: 10.3766/jaaa.17077.
5
Temporal codes for amplitude contrast in auditory cortex.听觉皮层中幅度对比的时间编码。
J Neurosci. 2010 Jan 13;30(2):767-84. doi: 10.1523/JNEUROSCI.4170-09.2010.

引用本文的文献

2
4
Neural Substrates and Models of Omission Responses and Predictive Processes.神经基础与忽略反应和预测过程的模型。
Front Neural Circuits. 2022 Feb 1;16:799581. doi: 10.3389/fncir.2022.799581. eCollection 2022.
5
[Evolution of auditory response signal-to-noise ratio in ascending auditory pathways].[听觉上行通路中听觉反应信噪比的演变]
Nan Fang Yi Ke Da Xue Xue Bao. 2021 Nov 20;41(11):1712-1718. doi: 10.12122/j.issn.1673-4254.2021.11.17.
8
Listening in complex acoustic scenes.在复杂声学场景中聆听。
Curr Opin Physiol. 2020 Dec;18:63-72. doi: 10.1016/j.cophys.2020.09.001. Epub 2020 Sep 8.

本文引用的文献

3
Thresholding of auditory cortical representation by background noise.背景噪声对听觉皮层表征的阈值调节
Front Neural Circuits. 2014 Nov 10;8:133. doi: 10.3389/fncir.2014.00133. eCollection 2014.
4
Mechanisms of noise robust representation of speech in primary auditory cortex.初级听觉皮层中语音抗噪表示的机制。
Proc Natl Acad Sci U S A. 2014 May 6;111(18):6792-7. doi: 10.1073/pnas.1318017111. Epub 2014 Apr 21.
5
Encoding frequency contrast in primate auditory cortex.在灵长类听觉皮层中对频率对比进行编码。
J Neurophysiol. 2014 Jun 1;111(11):2244-63. doi: 10.1152/jn.00878.2013. Epub 2014 Mar 5.
6
Constructing noise-invariant representations of sound in the auditory pathway.在听觉通路上构建对声音不变的表示。
PLoS Biol. 2013 Nov;11(11):e1001710. doi: 10.1371/journal.pbio.1001710. Epub 2013 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验