Rittle Jonathan, Peters Jonas C
Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech) , Pasadena, California 91125, United States.
J Am Chem Soc. 2016 Mar 30;138(12):4243-8. doi: 10.1021/jacs.6b01230. Epub 2016 Mar 21.
Biological N2 fixation to NH3 may proceed at one or more Fe sites in the active-site cofactors of nitrogenases. Modeling individual e(-)/H(+) transfer steps of iron-ligated N2 in well-defined synthetic systems is hence of much interest but remains a significant challenge. While iron complexes have been recently discovered that catalyze the formation of NH3 from N2, mechanistic details remain uncertain. Herein, we report the synthesis and isolation of a diamagnetic, 5-coordinate Fe═NNH2(+) species supported by a tris(phosphino)silyl ligand via the direct protonation of a terminally bound Fe-N2(-) complex. The Fe═NNH2(+) complex is redox-active, and low-temperature spectroscopic data and DFT calculations evidence an accumulation of significant radical character on the hydrazido ligand upon one-electron reduction to S = (1)/2 Fe═NNH2. At warmer temperatures, Fe═NNH2 rapidly converts to an iron hydrazine complex, Fe-NH2NH2(+), via the additional transfer of proton and electron equivalents in solution. Fe-NH2NH2(+) can liberate NH3, and the sequence of reactions described here hence demonstrates that an iron site can shuttle from a distal intermediate (Fe═NNH2(+)) to an alternating intermediate (Fe-NH2NH2(+)) en route to NH3 liberation from N2. It is interesting to consider the possibility that similar hybrid distal/alternating crossover mechanisms for N2 reduction may be operative in biological N2 fixation.
生物固氮生成氨的过程可能发生在固氮酶活性位点辅因子中的一个或多个铁位点上。因此,在明确的合成体系中对铁配位的N₂进行单个电子/质子转移步骤的建模备受关注,但仍然是一项重大挑战。虽然最近发现了能催化由N₂形成NH₃的铁配合物,但其机理细节仍不明确。在此,我们报道了通过对末端结合的Fe-N₂⁻配合物进行直接质子化,合成并分离出一种由三(膦基)硅基配体支撑的抗磁性、五配位的Fe═NNH₂⁺物种。Fe═NNH₂⁺配合物具有氧化还原活性,低温光谱数据和密度泛函理论计算表明,在单电子还原为S = 1/2的Fe═NNH₂时,肼基配体上积累了显著的自由基特征。在较高温度下,Fe═NNH₂通过溶液中质子和电子当量的进一步转移迅速转化为铁肼配合物Fe-NH₂NH₂⁺。Fe-NH₂NH₂⁺能释放出NH₃,因此这里描述的反应序列表明,一个铁位点在从N₂释放NH₃的过程中可以从远端中间体(Fe═NNH₂⁺)穿梭到交替中间体(Fe-NH₂NH₂⁺)。考虑到在生物固氮中可能存在类似的用于N₂还原的混合远端/交替交叉机制,这是很有意思的。