文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

4C-ker:一种可重复鉴定由4C-Seq实验捕获的全基因组相互作用的方法。

4C-ker: A Method to Reproducibly Identify Genome-Wide Interactions Captured by 4C-Seq Experiments.

作者信息

Raviram Ramya, Rocha Pedro P, Müller Christian L, Miraldi Emily R, Badri Sana, Fu Yi, Swanzey Emily, Proudhon Charlotte, Snetkova Valentina, Bonneau Richard, Skok Jane A

机构信息

Department of Pathology, New York University School of Medicine, New York, New York, United States of America.

Department of Biology, New York University, New York, New York, United States of America.

出版信息

PLoS Comput Biol. 2016 Mar 3;12(3):e1004780. doi: 10.1371/journal.pcbi.1004780. eCollection 2016 Mar.


DOI:10.1371/journal.pcbi.1004780
PMID:26938081
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4777514/
Abstract

4C-Seq has proven to be a powerful technique to identify genome-wide interactions with a single locus of interest (or "bait") that can be important for gene regulation. However, analysis of 4C-Seq data is complicated by the many biases inherent to the technique. An important consideration when dealing with 4C-Seq data is the differences in resolution of signal across the genome that result from differences in 3D distance separation from the bait. This leads to the highest signal in the region immediately surrounding the bait and increasingly lower signals in far-cis and trans. Another important aspect of 4C-Seq experiments is the resolution, which is greatly influenced by the choice of restriction enzyme and the frequency at which it can cut the genome. Thus, it is important that a 4C-Seq analysis method is flexible enough to analyze data generated using different enzymes and to identify interactions across the entire genome. Current methods for 4C-Seq analysis only identify interactions in regions near the bait or in regions located in far-cis and trans, but no method comprehensively analyzes 4C signals of different length scales. In addition, some methods also fail in experiments where chromatin fragments are generated using frequent cutter restriction enzymes. Here, we describe 4C-ker, a Hidden-Markov Model based pipeline that identifies regions throughout the genome that interact with the 4C bait locus. In addition, we incorporate methods for the identification of differential interactions in multiple 4C-seq datasets collected from different genotypes or experimental conditions. Adaptive window sizes are used to correct for differences in signal coverage in near-bait regions, far-cis and trans chromosomes. Using several datasets, we demonstrate that 4C-ker outperforms all existing 4C-Seq pipelines in its ability to reproducibly identify interaction domains at all genomic ranges with different resolution enzymes.

摘要

4C-Seq已被证明是一种强大的技术,可用于识别全基因组范围内与单个感兴趣位点(或“诱饵”)的相互作用,这对基因调控可能很重要。然而,4C-Seq数据的分析因该技术固有的许多偏差而变得复杂。处理4C-Seq数据时的一个重要考虑因素是,由于与诱饵的三维距离分离不同,全基因组信号分辨率存在差异。这导致在诱饵紧邻区域信号最高,而在远顺式和反式区域信号越来越低。4C-Seq实验的另一个重要方面是分辨率,它受限制酶的选择及其切割基因组频率的影响很大。因此,重要的是4C-Seq分析方法要足够灵活,能够分析使用不同酶生成的数据,并识别整个基因组的相互作用。当前的4C-Seq分析方法仅识别诱饵附近区域或远顺式和反式区域中的相互作用,但没有方法能全面分析不同长度尺度的4C信号。此外,一些方法在使用频繁切割限制酶产生染色质片段的实验中也会失败。在此,我们描述了4C-ker,这是一种基于隐马尔可夫模型的流程,可识别全基因组中与4C诱饵位点相互作用的区域。此外,我们纳入了在从不同基因型或实验条件收集的多个4C-Seq数据集中识别差异相互作用的方法。使用自适应窗口大小来校正诱饵附近区域、远顺式和反式染色体中信号覆盖的差异。通过几个数据集,我们证明4C-ker在使用不同分辨率酶在所有基因组范围内可重复识别相互作用结构域的能力方面优于所有现有的4C-Seq流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/812a/4777514/10b85c11c2ec/pcbi.1004780.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/812a/4777514/13e2d3378282/pcbi.1004780.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/812a/4777514/0bf822ba222b/pcbi.1004780.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/812a/4777514/687dc660c91b/pcbi.1004780.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/812a/4777514/009c9b731dac/pcbi.1004780.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/812a/4777514/10b85c11c2ec/pcbi.1004780.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/812a/4777514/13e2d3378282/pcbi.1004780.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/812a/4777514/0bf822ba222b/pcbi.1004780.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/812a/4777514/687dc660c91b/pcbi.1004780.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/812a/4777514/009c9b731dac/pcbi.1004780.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/812a/4777514/10b85c11c2ec/pcbi.1004780.g005.jpg

相似文献

[1]
4C-ker: A Method to Reproducibly Identify Genome-Wide Interactions Captured by 4C-Seq Experiments.

PLoS Comput Biol. 2016-3-3

[2]
Comparative analysis of 4C-Seq data generated from enzyme-based and sonication-based methods.

BMC Genomics. 2013-5-24

[3]
Benchmarking of 4C-seq pipelines based on real and simulated data.

Bioinformatics. 2019-12-1

[4]
4C-seq from beginning to end: A detailed protocol for sample preparation and data analysis.

Methods. 2019-7-26

[5]
Analysis of 4C-seq data: A comparison of methods.

J Bioinform Comput Biol. 2020-2

[6]
4C technology: protocols and data analysis.

Methods Enzymol. 2012

[7]
4Cin: A computational pipeline for 3D genome modeling and virtual Hi-C analyses from 4C data.

PLoS Comput Biol. 2018-3-9

[8]
w4CSeq: software and web application to analyze 4C-seq data.

Bioinformatics. 2016-11-1

[9]
fourSig: a method for determining chromosomal interactions in 4C-Seq data.

Nucleic Acids Res. 2014-2-20

[10]
High-throughput Identification of Gene Regulatory Sequences Using Next-generation Sequencing of Circular Chromosome Conformation Capture (4C-seq).

J Vis Exp. 2018-10-5

引用本文的文献

[1]
Genetic coupling of enhancer activity and connectivity in gene expression control.

Nat Commun. 2025-1-27

[2]
Transitions in chromatin conformation shaped by fatty acids and the circadian clock underlie hepatic transcriptional reorganization in obese mice.

Cell Mol Life Sci. 2024-7-26

[3]
The transcription factor NF-κB orchestrates nucleosome remodeling during the primary response to Toll-like receptor 4 signaling.

Immunity. 2024-3-12

[4]
Cis-regulatory effect of HPV integration is constrained by host chromatin architecture in cervical cancers.

Mol Oncol. 2024-5

[5]
Differentiation block in acute myeloid leukemia regulated by intronic sequences of .

iScience. 2023-7-11

[6]
Three-way contact analysis characterizes the higher order organization of the Tcra locus.

Nucleic Acids Res. 2023-9-22

[7]
A DNA tumor virus globally reprograms host 3D genome architecture to achieve immortal growth.

Nat Commun. 2023-3-22

[8]
Active enhancers strengthen insulation by RNA-mediated CTCF binding at chromatin domain boundaries.

Genome Res. 2023-1

[9]
Intronic enhancers of the human gene predominantly regulate its expression in brain in vivo.

Sci Adv. 2022-11-25

[10]
Allele-specific aberration of imprinted domain chromosome architecture associates with large offspring syndrome.

iScience. 2022-4-20

本文引用的文献

[1]
FourCSeq: analysis of 4C sequencing data.

Bioinformatics. 2015-10-1

[2]
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.

Genome Biol. 2014

[3]
Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization.

Genes Dev. 2014-12-15

[4]
A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.

Cell. 2014-12-18

[5]
Interpreting 4C-Seq data: how far can we go?

Epigenomics. 2014

[6]
HTSeq--a Python framework to work with high-throughput sequencing data.

Bioinformatics. 2015-1-15

[7]
Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C.

Genome Res. 2014-11

[8]
Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia.

Cell. 2014-7-31

[9]
Targeted Chromatin Capture (T2C): a novel high resolution high throughput method to detect genomic interactions and regulatory elements.

Epigenetics Chromatin. 2014-6-16

[10]
The 3D genome in transcriptional regulation and pluripotency.

Cell Stem Cell. 2014-6-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索