Suppr超能文献

通过基因组背景分析探究dha操纵子的进化与功能关系

Evolutionary and Functional Relationships of the dha Regulon by Genomic Context Analysis.

作者信息

Martins-Pinheiro Marinalva, Lima Wanessa C, Asif Huma, Oller Cláudio A, Menck Carlos F M

机构信息

Dept of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-900, Brazil.

Dept. of Chemical Engineering, Polytechnic School, University of São Paulo, São Paulo, Brazil.

出版信息

PLoS One. 2016 Mar 3;11(3):e0150772. doi: 10.1371/journal.pone.0150772. eCollection 2016.

Abstract

3-hydroxypropionaldehyde (3-HPA) and 1,3-propanediol (1,3-PD) are subproducts of glycerol degradation and of economical interest as they are used for polymers synthesis, such as polyesters and polyurethanes. Some few characterized bacterial species (mostly from Firmicutes and Gamma-proteobacteria groups) are able to catabolize these monomers from glycerol using the gene products from the dha regulon. To expand our knowledge and direct further experimental studies on the regulon and related genes for the anaerobic glycerol metabolism, an extensive genomic screening was performed to identify the presence of the dha genes in fully sequenced prokaryotic genomes. Interestingly, this work shows that although only few bacteria species are known to produce 3-HPA or 1,3-PD, the incomplete regulon is found in more than 100 prokaryotic genomes. However, the complete pathway is found only in a few dozen species belonging to five different taxonomic groups, including one Archaea species, Halalkalicoccus jeotgali. Phylogenetic analysis and conservation of both gene synteny and primary sequence similarity reinforce the idea that these genes have a common origin and were possibly acquired by lateral gene transfer (LGT). Besides the evolutionary aspect, the identification of homologs from several different organisms may predict potential alternative targets for faster or more efficient biological synthesis of 3-HPA or 1,3-PD.

摘要

3-羟基丙醛(3-HPA)和1,3-丙二醇(1,3-PD)是甘油降解的副产物,具有经济价值,因为它们可用于合成聚合物,如聚酯和聚氨酯。一些已鉴定的细菌物种(主要来自厚壁菌门和γ-变形菌门)能够利用dha操纵子的基因产物从甘油中分解代谢这些单体。为了扩展我们对该操纵子和厌氧甘油代谢相关基因的认识,并指导进一步的实验研究,我们进行了广泛的基因组筛选,以确定在已完全测序的原核生物基因组中dha基因的存在情况。有趣的是,这项研究表明,虽然已知只有少数细菌物种能产生3-HPA或1,3-PD,但在100多个原核生物基因组中发现了不完整的操纵子。然而,完整的途径仅在属于五个不同分类群的几十种物种中发现,其中包括一种古细菌,嗜盐嗜碱球菌。系统发育分析以及基因共线性和一级序列相似性的保守性强化了这样一种观点,即这些基因有共同的起源,可能是通过横向基因转移(LGT)获得的。除了进化方面,从几种不同生物体中鉴定出同源物可能会预测出用于更快或更高效生物合成3-HPA或1,3-PD的潜在替代靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4606/4777399/285f701aa69b/pone.0150772.g001.jpg

相似文献

1
Evolutionary and Functional Relationships of the dha Regulon by Genomic Context Analysis.
PLoS One. 2016 Mar 3;11(3):e0150772. doi: 10.1371/journal.pone.0150772. eCollection 2016.
4
New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea.
Appl Environ Microbiol. 2005 Nov;71(11):7083-91. doi: 10.1128/AEM.71.11.7083-7091.2005.
5
Expression of 1,3-propanediol oxidoreductase and its isoenzyme in Klebsiella pneumoniae for bioconversion of glycerol into 1,3-propanediol.
Appl Microbiol Biotechnol. 2010 Aug;87(6):2177-84. doi: 10.1007/s00253-010-2678-0. Epub 2010 May 25.
7
Retroids in archaea: phylogeny and lateral origins.
Mol Biol Evol. 2003 Jul;20(7):1134-42. doi: 10.1093/molbev/msg135. Epub 2003 May 30.
9
A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis.
Nucleic Acids Res. 2002 Jan 15;30(2):482-96. doi: 10.1093/nar/30.2.482.
10
A spectrum of verticality across genes.
PLoS Genet. 2020 Nov 2;16(11):e1009200. doi: 10.1371/journal.pgen.1009200. eCollection 2020 Nov.

引用本文的文献

本文引用的文献

1
Complete genome sequence of Mesorhizobium opportunistum type strain WSM2075(T.).
Stand Genomic Sci. 2013 Dec 15;9(2):294-303. doi: 10.4056/sigs.4538264. eCollection 2013 Dec 20.
2
Role of dihydroxyacetone kinases I and II in the dha regulon of Klebsiella pneumoniae.
J Biotechnol. 2014 May 10;177:13-9. doi: 10.1016/j.jbiotec.2014.02.011. Epub 2014 Feb 28.
3
MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.
Mol Biol Evol. 2013 Dec;30(12):2725-9. doi: 10.1093/molbev/mst197. Epub 2013 Oct 16.
4
Glycerol assimilation and production of 1,3-propanediol by Citrobacter amalonaticus Y19.
Appl Microbiol Biotechnol. 2013 Jun;97(11):5001-11. doi: 10.1007/s00253-013-4726-z. Epub 2013 Feb 3.
6
1,3-Propanediol production from glycerol by a newly isolated Trichococcus strain.
Microb Biotechnol. 2012 Jul;5(4):573-8. doi: 10.1111/j.1751-7915.2011.00318.x. Epub 2011 Nov 24.
7
High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a.
Appl Microbiol Biotechnol. 2012 Feb;93(3):1057-63. doi: 10.1007/s00253-011-3595-6. Epub 2011 Oct 5.
9
The diversity and molecular modelling analysis of B₁₂ and B₁₂-independent glycerol dehydratases.
Int J Bioinform Res Appl. 2010;6(5):484-507. doi: 10.1504/IJBRA.2010.037988.
10
1,3-Propanediol and its copolymers: research, development and industrialization.
Biotechnol J. 2010 Nov;5(11):1137-48. doi: 10.1002/biot.201000140.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验