Suppr超能文献

一种基于生理学的肝脏药物消除血流网络模型III:二维/三维扩散限制聚集小叶模型

A physiologically-based flow network model for hepatic drug elimination III: 2D/3D DLA lobule models.

作者信息

Rezania Vahid, Coombe Dennis, Tuszynski Jack A

机构信息

Department of Physical Sciences, MacEwan University, Edmonton, AB, T5J 4S2, Canada.

Computer Modelling Group Ltd, Calgary, AB, T2L 2A6, Canada.

出版信息

Theor Biol Med Model. 2016 Mar 3;13:9. doi: 10.1186/s12976-016-0034-5.

Abstract

BACKGROUND

One of the major issues in current pharmaceutical development is potential hepatotoxicity and drug-induced liver damage. This is due to the unique metabolic processes performed in the liver to prevent accumulation of a wide range of chemicals in the blood. Recently, we developed a physiologically-based lattice model to address the transport and metabolism of drugs in the liver lobule (liver functional unit).

METHOD

In this paper, we extend our idealized model to consider structural and spatial variability in two and three dimensions. We introduce a hexagonal-based model with one input (portal vein) and six outputs (hepatic veins) to represent a typical liver lobule. To capture even more realistic structures, we implement a novel sequential diffusion-limited aggregation (DLA) method to construct a morphological sinusoid network in the lobule. A 3D model constructed with stacks of multiple 2D sinusoid realizations is explored to study the effects of 3D structural variations. The role of liver zonation on drug metabolism in the lobule is also addressed, based on flow-based predicted steady-state O2 profiles used as a zonation indicator.

RESULTS

With this model, we analyze predicted drug concentration levels observed exiting the lobule with their detailed distribution inside the lobule, and compare with our earlier idealized models. In 2D, due to randomness of the sinusoidal structure, individual hepatic veins respond differently (i.e. at different times) to injected drug. In 3D, however, the variation of response to the injected drug is observed to be less extreme. Also, the production curves show more diffusive behavior in 3D than in 2D.

CONCLUSION

Although, the individual producing ports respond differently, the average lobule production summed over all hepatic veins is more diffuse. Thus the net effect of all these variations makes the overall response smoother. We also show that, in 3D, the effect of zonation on drug production characteristics appears quite small. Our new biophysical structural analysis of a physiologically-based 3D lobule can therefore form the basis for a quantitative assessment of liver function and performance both in health and disease.

摘要

背景

当前药物研发中的一个主要问题是潜在的肝毒性和药物性肝损伤。这是由于肝脏中进行的独特代谢过程可防止多种化学物质在血液中蓄积。最近,我们开发了一种基于生理学的晶格模型来研究药物在肝小叶(肝脏功能单位)中的转运和代谢。

方法

在本文中,我们扩展了理想化模型,以考虑二维和三维的结构和空间变异性。我们引入了一个基于六边形的模型,该模型有一个输入(门静脉)和六个输出(肝静脉)来代表一个典型的肝小叶。为了捕捉更逼真的结构,我们采用了一种新颖的顺序扩散限制聚集(DLA)方法在小叶中构建形态学上的肝血窦网络。探索了用多个二维肝血窦实现堆叠构建的三维模型,以研究三维结构变化的影响。还基于用作分区指标的基于流量预测的稳态氧气分布,探讨了肝小叶分区在药物代谢中的作用。

结果

使用该模型,我们分析了从小叶流出时预测的药物浓度水平及其在小叶内的详细分布,并与我们早期的理想化模型进行了比较。在二维中,由于肝血窦结构的随机性,各个肝静脉对注入药物的反应不同(即在不同时间)。然而,在三维中,观察到对注入药物的反应变化不那么极端。此外,生成曲线在三维中比在二维中表现出更多的扩散行为。

结论

尽管各个产生端口的反应不同,但所有肝静脉的平均小叶产量更具扩散性。因此,所有这些变化的净效应使整体反应更平滑。我们还表明,在三维中,分区对药物产生特征的影响似乎很小。因此,我们基于生理学的三维小叶的新生物物理结构分析可为健康和疾病状态下肝功能和性能的定量评估奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabd/4778290/a4088e795786/12976_2016_34_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验