Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, CNRS, and Université de Strasbourg , 23 rue du Loess, F-67300 Strasbourg, France.
CEMES, Université de Toulouse, CNRS, UPS , 29 rue Jeanne-Marvig, F-31055 Toulouse, France.
ACS Appl Mater Interfaces. 2016 Mar 23;8(11):7553-63. doi: 10.1021/acsami.5b12777. Epub 2016 Mar 14.
Magnetoelectric coupling at multiferroic interfaces is a promising route toward the nonvolatile electric-field control of magnetization. Here, we use optical measurements to study the static and dynamic variations of the interface magnetization induced by an electric field in Co/PbZr0.2Ti0.8O3 (Co/PZT) bilayers at room temperature. The measurements allow us to identify different coupling mechanisms. We further investigate the local electronic and magnetic structure of the interface by means of transmission electron microscopy, soft X-ray magnetic circular dichroism, and density functional theory to corroborate the coupling mechanism. The measurements demonstrate a mixed linear and quadratic optical response to the electric field, which results from a magneto-electro-optical effect. We propose a decomposition method of the optical signal to discriminate between different components involved in the electric field-induced polarization rotation of the reflected light. This allows us to extract a signal that we can ascribe to interface magnetoelectric coupling. The associated surface magnetization exhibits a clear hysteretic variation of odd symmetry with respect to the electric field and nonzero remanence. The interface coupling is remarkably stable over a wide frequency range (1-50 kHz), and the application of a bias magnetic field is not necessary for the coupling to occur. These results show the potential of exploiting interface coupling with the prospect of optimizing the performance of magnetoelectric memory devices in terms of stability, as well as fast and dissipationless operation.
多铁异质结中的磁电耦合是实现非易失性磁场电控制的一种很有前途的方法。在这里,我们使用光学测量技术在室温下研究了 Co/PbZr0.2Ti0.8O3 (Co/PZT) 双层膜中电场诱导的界面磁化的静态和动态变化。这些测量可以确定不同的耦合机制。我们进一步通过透射电子显微镜、软 X 射线磁圆二色性和密度泛函理论研究了界面的局部电子和磁结构,以证实耦合机制。测量结果表明,界面存在混合线性和二次光响应,这是磁光电效应的结果。我们提出了一种光学信号的分解方法,可以区分参与反射光的电场诱导极化旋转的不同分量。这使我们能够提取出一个信号,我们可以将其归因于界面磁电耦合。相关的表面磁化表现出明显的关于电场的奇对称磁滞变化和非零剩磁。界面耦合在很宽的频率范围内(1-50 kHz)非常稳定,并且不需要施加偏置磁场即可发生耦合。这些结果表明,利用界面耦合具有很大的潜力,可以优化磁电存储器件的性能,提高其稳定性和快速、无损耗的操作。