Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University , Xi'an 710049, China.
Department of Electrical and Computer Engineering, Northeastern University , 360 Huntington Avenue, Boston, Massachusetts 02115, United States.
ACS Nano. 2017 Apr 25;11(4):4337-4345. doi: 10.1021/acsnano.7b01547. Epub 2017 Apr 12.
One of the central challenges in realizing multiferroics-based magnetoelectric memories is to switch perpendicular magnetic anisotropy (PMA) with a control voltage. In this study, we demonstrate electrical flipping of magnetization between the out-of-plane and the in-plane directions in (Co/Pt)/(011) Pb(MgNb)O-PbTiO multiferroic heterostructures through a voltage-controllable spin reorientation transition (SRT). The SRT onset temperature can be dramatically suppressed at least 200 K by applying an electric field, accompanied by a giant electric-field-induced effective magnetic anisotropy field (ΔH) up to 1100 Oe at 100 K. In comparison with conventional strain-mediated magnetoelastic coupling that provides a ΔH of only 110 Oe, that enormous effective field is mainly related to the interface effect of electric field modification of spin-orbit coupling from Co/Pt interfacial hybridization via strain. Moreover, electric field control of SRT is also achieved at room temperature, resulting in a ΔH of nearly 550 Oe. In addition, ferroelastically nonvolatile switching of PMA has been demonstrated in this system. E-field control of PMA and SRT in multiferroic heterostructures not only provides a platform to study strain effect and interfacial effect on magnetic anisotropy of the ultrathin ferromagnetic films but also enables the realization of power efficient PMA magnetoelectric and spintronic devices.
实现基于多铁性的磁电存储器的核心挑战之一是通过控制电压来切换垂直各向异性(PMA)。在这项研究中,我们通过电压可控的自旋重新定向转变(SRT),在(Co/Pt)/(011)Pb(MgNb)O-PbTiO 多铁异质结构中演示了在面外和面内方向之间的磁化的电翻转。通过施加电场,SRT 起始温度至少可以降低 200 K,同时在 100 K 时产生高达 1100 Oe 的巨大电致有效各向异性场(ΔH)。与仅提供 110 Oe 的ΔH 的传统应变介导磁弹耦合相比,这种巨大的有效场主要与通过应变从 Co/Pt 界面杂化改变自旋轨道耦合的电场的界面效应有关。此外,还可以在室温下实现 SRT 的电场控制,从而产生近 550 Oe 的ΔH。此外,在该系统中还证明了 PMA 的铁弹性非易失性切换。多铁异质结构中 PMA 和 SRT 的电场控制不仅提供了一个研究应变效应和界面效应对超薄铁磁薄膜各向异性影响的平台,而且还实现了高效的 PMA 磁电和自旋电子器件。