Suppr超能文献

利用神经网络和地理信息系统(GIS)对密西西比州沙门氏菌感染进行建模。

Salmonella infections modelling in Mississippi using neural network and geographical information system (GIS).

作者信息

Akil Luma, Ahmad H Anwar

机构信息

Department of Biology/Environmental Science, Jackson State University, Jackson, Mississippi, USA.

出版信息

BMJ Open. 2016 Mar 3;6(3):e009255. doi: 10.1136/bmjopen-2015-009255.

Abstract

OBJECTIVES

Mississippi (MS) is one of the southern states with high rates of foodborne infections. The objectives of this paper are to determine the extent of Salmonella and Escherichia coli infections in MS, and determine the Salmonella infections correlation with socioeconomic status using geographical information system (GIS) and neural network models.

METHODS

In this study, the relevant updated data of foodborne illness for southern states, from 2002 to 2011, were collected and used in the GIS and neural networks models. Data were collected from the Centers for Disease Control and Prevention (CDC), MS state Department of Health and the other states department of health. The correlation between low socioeconomic status and Salmonella infections were determined using models created by several software packages, including SAS, ArcGIS @RISK and NeuroShell.

RESULTS

Results of this study showed a significant increase in Salmonella outbreaks in MS during the study period, with highest rates in 2011 (47.84 ± 24.41 cases/100,000; p<0.001). MS had the highest rates of Salmonella outbreaks compared with other states (36 ± 6.29 cases/100,000; p<0.001). Regional and district variations in the rates were also observed. GIS maps of Salmonella outbreaks in MS in 2010 and 2011 showed the districts with higher rates of Salmonella. Regression analysis and neural network models showed a moderate correlation between cases of Salmonella infections and low socioeconomic factors. Poverty was shown to have a negative correlation with Salmonella outbreaks (R(2)=0.152, p<0.05).

CONCLUSIONS

Geographic location besides socioeconomic status may contribute to the high rates of Salmonella outbreaks in MS. Understanding the geographical and economic relationship with infectious diseases will help to determine effective methods to reduce outbreaks within low socioeconomic status communities.

摘要

目标

密西西比州(MS)是食源性感染率较高的南部州之一。本文的目的是确定MS州沙门氏菌和大肠杆菌感染的程度,并使用地理信息系统(GIS)和神经网络模型确定沙门氏菌感染与社会经济地位之间的相关性。

方法

在本研究中,收集了2002年至2011年南部各州食源性疾病的相关最新数据,并将其用于GIS和神经网络模型。数据来自疾病控制与预防中心(CDC)、MS州卫生部以及其他州的卫生部。使用包括SAS、ArcGIS @RISK和NeuroShell在内的多个软件包创建的模型,确定低社会经济地位与沙门氏菌感染之间的相关性。

结果

本研究结果显示,在研究期间,MS州沙门氏菌暴发显著增加,2011年发病率最高(47.84±24.41例/10万;p<0.001)。与其他州相比,MS州沙门氏菌暴发率最高(36±6.29例/10万;p<0.001)。还观察到发病率的区域和地区差异。2010年和2011年MS州沙门氏菌暴发的GIS地图显示了沙门氏菌发病率较高的地区。回归分析和神经网络模型显示,沙门氏菌感染病例与低社会经济因素之间存在中等相关性。贫困与沙门氏菌暴发呈负相关(R(2)=0.152,p<0.05)。

结论

除社会经济地位外,地理位置可能也是MS州沙门氏菌暴发率高的原因之一。了解与传染病相关的地理和经济关系,将有助于确定在低社会经济地位社区减少暴发的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/397e/4785344/bcf60c164e88/bmjopen2015009255f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验