Suppr超能文献

使用可穿戴传感器进行心肺适能评估:特定情境下亚极量心率的实验室及日常活动分析

Cardiorespiratory fitness estimation using wearable sensors: Laboratory and free-living analysis of context-specific submaximal heart rates.

作者信息

Altini Marco, Casale Pierluigi, Penders Julien, Ten Velde Gabrielle, Plasqui Guy, Amft Oliver

机构信息

Eindhoven University of Technology, The Netherlands and Bloom Technologies, Diepenbeek, Belgium;

Holst Centre/imec, Eindhoven, The Netherlands;

出版信息

J Appl Physiol (1985). 2016 May 1;120(9):1082-96. doi: 10.1152/japplphysiol.00519.2015. Epub 2016 Mar 3.

Abstract

In this work, we propose to use pattern recognition methods to determine submaximal heart rate (HR) during specific contexts, such as walking at a certain speed, using wearable sensors in free living, and using context-specific HR to estimate cardiorespiratory fitness (CRF). CRF of 51 participants was assessed by a maximal exertion test (V̇o2 max). Participants wore a combined accelerometer and HR monitor during a laboratory-based simulation of activities of daily living and for 2 wk in free living. Anthropometrics, HR while lying down, and walking at predefined speeds in laboratory settings were used to estimate CRF. Explained variance (R(2)) was 0.64 for anthropometrics, and increased up to 0.74 for context-specific HR (0.73-0.78 when including fat-free mass). Next, we developed activity recognition and walking speed estimation algorithms to determine the same contexts (i.e., lying down and walking) in free living. Context-specific HR in free living was highly correlated with laboratory measurements (Pearson's r = 0.71-0.75). R(2) for CRF estimation was 0.65 when anthropometrics were used as predictors, and increased up to 0.77 when including free-living context-specific HR (i.e., HR while walking at 5.5 km/h). R(2) varied between 0.73 and 0.80 when including fat-free mass among the predictors. Root mean-square error was reduced from 354.7 to 281.0 ml/min by the inclusion of context-specific HR parameters (21% error reduction). We conclude that pattern recognition techniques can be used to contextualize HR in free living and estimated CRF with accuracy comparable to what can be obtained with laboratory measurements of HR response to walking.

摘要

在本研究中,我们建议使用模式识别方法来确定特定情境下的次最大心率(HR),例如以一定速度行走时,在自由生活中使用可穿戴传感器,并利用特定情境下的心率来估计心肺适能(CRF)。通过最大运动测试(V̇o2 max)评估了51名参与者的心肺适能。参与者在基于实验室的日常生活活动模拟期间以及在自由生活的2周内佩戴了加速度计和心率监测器的组合设备。使用人体测量学数据、静息心率以及在实验室环境中以预定义速度行走时的心率来估计心肺适能。人体测量学数据对心肺适能的解释方差(R(2))为0.64,而特定情境下的心率对心肺适能的解释方差增加至0.74(包括去脂体重时为0.73 - 0.78)。接下来,我们开发了活动识别和步行速度估计算法,以确定自由生活中的相同情境(即躺下和行走)。自由生活中特定情境下的心率与实验室测量结果高度相关(Pearson相关系数r = 0.71 - 0.75)。当使用人体测量学数据作为预测指标时,心肺适能估计的R(2)为0.65,当纳入自由生活中特定情境下的心率(即5.5公里/小时行走时的心率)时,R(2)增加至0.77。当预测指标中包括去脂体重时,R(2)在0.73至0.80之间变化。通过纳入特定情境下的心率参数,均方根误差从354.7降至281.0毫升/分钟(误差降低21%)。我们得出结论,模式识别技术可用于在自由生活中对心率进行情境化处理,并以与通过实验室测量心率对行走的反应所获得的准确性相当的精度来估计心肺适能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验