Suppr超能文献

利用心率和步数数据估算心肺适能。

Estimation of cardiorespiratory fitness using heart rate and step count data.

机构信息

Welltory Inc., 541 Jefferson, Suite 100, Redwood City, CA, 94063, USA.

出版信息

Sci Rep. 2023 Sep 22;13(1):15808. doi: 10.1038/s41598-023-43024-x.

Abstract

Predicting cardiorespiratory fitness levels can be useful for measuring progress in an exercise program as well as for stratifying cardiovascular risk in asymptomatic adults. This study proposes a model to predict fitness level in terms of maximal oxygen uptake using anthropometric, heart rate, and step count data. The model was trained on a diverse cohort of 3115 healthy subjects (1035 women and 2080 men) aged 42 ± 10.6 years and tested on a cohort of 779 healthy subjects (260 women and 519 men) aged 42 ± 10.18 years. The developed model is capable of making accurate and reliable predictions with the average test set error of 3.946 ml/kg/min. The maximal oxygen uptake labels were obtained using wearable devices (Apple Watch and Garmin) during recorded workout sessions. Additionally, the model was validated on a sample of 10 subjects with maximal oxygen uptake determined directly using a treadmill protocol in a laboratory setting and showed an error of 4.982 ml/kg/min. Unlike most other models, which use accelerometer readings as additional input data, the proposed model relies solely on heart rate and step counts-data readily available on the majority of fitness trackers. The proposed model provides a point estimation and a probabilistic prediction of cardiorespiratory fitness level, thus it can estimate the prediction's uncertainty and construct confidence intervals.

摘要

预测心肺适能水平对于衡量运动计划中的进展以及对无症状成年人进行心血管风险分层非常有用。本研究提出了一种使用人体测量学、心率和步数数据预测最大摄氧量的模型。该模型在一个由 3115 名健康受试者(1035 名女性和 2080 名男性)组成的多样化队列中进行了训练,年龄为 42 ± 10.6 岁,并在一个由 779 名健康受试者(260 名女性和 519 名男性)组成的队列中进行了测试,年龄为 42 ± 10.18 岁。该开发的模型能够进行准确可靠的预测,平均测试集误差为 3.946 ml/kg/min。最大摄氧量标签是使用可穿戴设备(Apple Watch 和 Garmin)在记录的锻炼过程中获得的。此外,该模型还在一个由 10 名受试者组成的样本中进行了验证,这些受试者的最大摄氧量是在实验室环境中使用跑步机协议直接确定的,误差为 4.982 ml/kg/min。与大多数其他使用加速度计读数作为附加输入数据的模型不同,该模型仅依赖于心率和步数数据,这些数据在大多数健身追踪器上都很容易获得。所提出的模型提供了心肺适能水平的点估计和概率预测,因此可以估计预测的不确定性并构建置信区间。

相似文献

3
Cardiorespiratory fitness estimation from heart rate and body movement in daily life.从日常生活中的心率和身体运动估计心肺适能。
J Appl Physiol (1985). 2020 Mar 1;128(3):493-500. doi: 10.1152/japplphysiol.00631.2019. Epub 2020 Jan 30.

本文引用的文献

7
Measurement of the maximum oxygen uptake V̇o: V̇o is no longer acceptable.最大摄氧量V̇o的测量:V̇o不再适用。
J Appl Physiol (1985). 2017 Apr 1;122(4):997-1002. doi: 10.1152/japplphysiol.01063.2016. Epub 2017 Feb 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验