Welltory Inc., 541 Jefferson, Suite 100, Redwood City, CA, 94063, USA.
Sci Rep. 2023 Sep 22;13(1):15808. doi: 10.1038/s41598-023-43024-x.
Predicting cardiorespiratory fitness levels can be useful for measuring progress in an exercise program as well as for stratifying cardiovascular risk in asymptomatic adults. This study proposes a model to predict fitness level in terms of maximal oxygen uptake using anthropometric, heart rate, and step count data. The model was trained on a diverse cohort of 3115 healthy subjects (1035 women and 2080 men) aged 42 ± 10.6 years and tested on a cohort of 779 healthy subjects (260 women and 519 men) aged 42 ± 10.18 years. The developed model is capable of making accurate and reliable predictions with the average test set error of 3.946 ml/kg/min. The maximal oxygen uptake labels were obtained using wearable devices (Apple Watch and Garmin) during recorded workout sessions. Additionally, the model was validated on a sample of 10 subjects with maximal oxygen uptake determined directly using a treadmill protocol in a laboratory setting and showed an error of 4.982 ml/kg/min. Unlike most other models, which use accelerometer readings as additional input data, the proposed model relies solely on heart rate and step counts-data readily available on the majority of fitness trackers. The proposed model provides a point estimation and a probabilistic prediction of cardiorespiratory fitness level, thus it can estimate the prediction's uncertainty and construct confidence intervals.
预测心肺适能水平对于衡量运动计划中的进展以及对无症状成年人进行心血管风险分层非常有用。本研究提出了一种使用人体测量学、心率和步数数据预测最大摄氧量的模型。该模型在一个由 3115 名健康受试者(1035 名女性和 2080 名男性)组成的多样化队列中进行了训练,年龄为 42 ± 10.6 岁,并在一个由 779 名健康受试者(260 名女性和 519 名男性)组成的队列中进行了测试,年龄为 42 ± 10.18 岁。该开发的模型能够进行准确可靠的预测,平均测试集误差为 3.946 ml/kg/min。最大摄氧量标签是使用可穿戴设备(Apple Watch 和 Garmin)在记录的锻炼过程中获得的。此外,该模型还在一个由 10 名受试者组成的样本中进行了验证,这些受试者的最大摄氧量是在实验室环境中使用跑步机协议直接确定的,误差为 4.982 ml/kg/min。与大多数其他使用加速度计读数作为附加输入数据的模型不同,该模型仅依赖于心率和步数数据,这些数据在大多数健身追踪器上都很容易获得。所提出的模型提供了心肺适能水平的点估计和概率预测,因此可以估计预测的不确定性并构建置信区间。