Zhan Kun, Teng Jicai, Shi Jinhui, Li Qiaoqiao, Wang Mingying
School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
Neural Comput. 2016 Jun;28(6):1072-100. doi: 10.1162/NECO_a_00832. Epub 2016 Mar 4.
Inspired by gamma-band oscillations and other neurobiological discoveries, neural networks research shifts the emphasis toward temporal coding, which uses explicit times at which spikes occur as an essential dimension in neural representations. We present a feature-linking model (FLM) that uses the timing of spikes to encode information. The first spiking time of FLM is applied to image enhancement, and the processing mechanisms are consistent with the human visual system. The enhancement algorithm achieves boosting the details while preserving the information of the input image. Experiments are conducted to demonstrate the effectiveness of the proposed method. Results show that the proposed method is effective.
受伽马波段振荡和其他神经生物学发现的启发,神经网络研究将重点转向时间编码,即把尖峰发生的具体时间作为神经表征的一个基本维度来使用。我们提出了一种利用尖峰时间来编码信息的特征链接模型(FLM)。FLM的首次尖峰时间被应用于图像增强,其处理机制与人类视觉系统一致。该增强算法在保留输入图像信息的同时实现了细节增强。通过实验来证明所提方法的有效性。结果表明所提方法是有效的。