Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Phys Rev Lett. 2016 Feb 19;116(7):070601. doi: 10.1103/PhysRevLett.116.070601.
Using the weak-noise theory, we evaluate the probability distribution P(H,t) of large deviations of height H of the evolving surface height h(x,t) in the Kardar-Parisi-Zhang equation in one dimension when starting from a flat interface. We also determine the optimal history of the interface, conditioned on reaching the height H at time t. We argue that the tails of P behave, at arbitrary time t>0, and in a proper moving frame, as -lnP∼|H|^{5/2} and ∼|H|^{3/2}. The 3/2 tail coincides with the asymptotic of the Gaussian orthogonal ensemble Tracy-Widom distribution, previously observed at long times.
利用弱噪声理论,我们评估了一维 Kardar-Parisi-Zhang 方程中演化表面高度 h(x,t)的高度 H 的大偏差的概率分布 P(H,t),此时从一个平面界面开始。我们还确定了在时间 t 达到高度 H 时,界面的最优历史。我们认为,在任意时间 t>0 处,并在适当的移动框架中,P 的尾部行为为 -lnP∼|H|^{5/2}和 ∼|H|^{3/2}。3/2 尾部与之前在长时间观测到的高斯正交系综 Tracy-Widom 分布的渐近情况相符。