Suppr超能文献

三维纳维-斯托克斯方程中极端涡度和应变的自发对称性破缺

Spontaneous symmetry breaking for extreme vorticity and strain in the three-dimensional Navier-Stokes equations.

作者信息

Schorlepp Timo, Grafke Tobias, May Sandra, Grauer Rainer

机构信息

Institute for Theoretical Physics I, Ruhr-University Bochum, Universitätsstrasse 150, Bochum 44801, Germany.

Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210051. doi: 10.1098/rsta.2021.0051. Epub 2022 May 9.

Abstract

We investigate the spatio-temporal structure of the most likely configurations realizing extremely high vorticity or strain in the stochastically forced three-dimensional incompressible Navier-Stokes equations. Most likely configurations are computed by numerically finding the highest probability velocity field realizing an extreme constraint as solution of a large optimization problem. High-vorticity configurations are identified as pinched vortex filaments with swirl, while high-strain configurations correspond to counter-rotating vortex rings. We additionally observe that the most likely configurations for vorticity and strain spontaneously break their rotational symmetry for extremely high observable values. Instanton calculus and large deviation theory allow us to show that these maximum likelihood realizations determine the tail probabilities of the observed quantities. In particular, we are able to demonstrate that artificially enforcing rotational symmetry for large strain configurations leads to a severe underestimate of their probability, as it is dominated in likelihood by an exponentially more likely symmetry-broken vortex-sheet configuration. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 2)'.

摘要

我们研究了在随机强迫的三维不可压缩纳维-斯托克斯方程中,实现极高涡度或应变的最可能构型的时空结构。通过数值求解一个大型优化问题,找到实现极端约束的最高概率速度场,从而计算出最可能构型。高涡度构型被识别为带有涡旋的收缩涡丝,而高应变构型对应于反向旋转的涡环。我们还观察到,对于极高的可观测值,涡度和应变的最可能构型会自发地打破其旋转对称性。瞬子演算和大偏差理论使我们能够证明,这些最大似然实现决定了观测到的量的尾部概率。特别是,我们能够证明,人为地对大应变构型强制实施旋转对称性会导致对其概率的严重低估,因为在似然性上,它被指数级更可能的对称性破缺涡片构型所主导。本文是主题为“物理流体动力学中的数学问题(第二部分)”的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c3d/9081818/f365204c955b/rsta20210051f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验