Fahmi Rachid, Eck Brendan L, Levi Jacob, Fares Anas, Dhanantwari Amar, Vembar Mani, Bezerra Hiram G, Wilson David L
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
Phys Med Biol. 2016 Mar 21;61(6):2407-31. doi: 10.1088/0031-9155/61/6/2407. Epub 2016 Mar 4.
We optimized and evaluated dynamic myocardial CT perfusion (CTP) imaging on a prototype spectral detector CT (SDCT) scanner. Simultaneous acquisition of energy sensitive projections on the SDCT system enabled projection-based material decomposition, which typically performs better than image-based decomposition required by some other system designs. In addition to virtual monoenergetic, or keV images, the SDCT provided conventional (kVp) images, allowing us to compare and contrast results. Physical phantom measurements demonstrated linearity of keV images, a requirement for quantitative perfusion. Comparisons of kVp to keV images demonstrated very significant reductions in tell-tale beam hardening (BH) artifacts in both phantom and pig images. In phantom images, consideration of iodine contrast to noise ratio and small residual BH artifacts suggested optimum processing at 70 keV. The processing pipeline for dynamic CTP measurements included 4D image registration, spatio-temporal noise filtering, and model-independent singular value decomposition deconvolution, automatically regularized using the L-curve criterion. In normal pig CTP, 70 keV perfusion estimates were homogeneous throughout the myocardium. At 120 kVp, flow was reduced by more than 20% on the BH-hypo-enhanced myocardium, a range that might falsely indicate actionable ischemia, considering the 0.8 threshold for actionable FFR. With partial occlusion of the left anterior descending (LAD) artery (FFR < 0.8), perfusion defects at 70 keV were correctly identified in the LAD territory. At 120 kVp, BH affected the size and flow in the ischemic area; e.g. with FFR ≈ 0.65, the anterior-to-lateral flow ratio was 0.29 ± 0.01, over-estimating stenosis severity as compared to 0.42 ± 0.01 (p < 0.05) at 70 keV. On the non-ischemic inferior wall (not a LAD territory), the flow ratio was 0.50 ± 0.04 falsely indicating an actionable ischemic condition in a healthy territory. This ratio was 1.00 ± 0.08 at 70 keV. Results suggest that projection-based keV imaging with the SDCT system and proper processing could enable useful myocardial CTP, much improved over conventional CT.
我们在一台原型光谱探测器CT(SDCT)扫描仪上对动态心肌CT灌注(CTP)成像进行了优化和评估。在SDCT系统上同时采集能量敏感投影能够实现基于投影的物质分解,这通常比其他一些系统设计所需的基于图像的分解表现更好。除了虚拟单能或keV图像外,SDCT还提供传统的(kVp)图像,使我们能够比较和对比结果。物理体模测量证明了keV图像的线性,这是定量灌注的一个要求。kVp图像与keV图像的比较表明,在体模和猪图像中,明显的线束硬化(BH)伪影都有非常显著的减少。在体模图像中,考虑碘对比噪声比和小的残余BH伪影表明在70 keV时进行最佳处理。动态CTP测量的处理流程包括4D图像配准、时空噪声滤波以及使用L曲线准则自动正则化的与模型无关的奇异值分解反卷积。在正常猪的CTP中,70 keV灌注估计在整个心肌中是均匀的。在120 kVp时,在BH低增强的心肌上血流减少超过20%,考虑到可操作的FFR阈值为0.8,这个范围可能会错误地指示可采取行动的缺血。在左前降支(LAD)动脉部分闭塞(FFR < 0.8)时,在LAD区域正确识别出了keV为70时的灌注缺损。在120 kVp时,BH影响缺血区域的大小和血流;例如,当FFR≈0.65时,前外侧血流比为0.29±0.01,与70 keV时的0.42±0.01相比高估了狭窄严重程度(p < 0.05)。在非缺血的下壁(非LAD区域),血流比为0.50±0.04,错误地在健康区域指示了可采取行动的缺血情况。在70 keV时这个比值为1.00±0.08。结果表明,使用SDCT系统进行基于投影的keV成像并进行适当处理可以实现有用的心肌CTP,比传统CT有很大改进。