Suppr超能文献

基于 CT 的心肌灌注成像免校准束硬化校正。

Calibration-free beam hardening correction for myocardial perfusion imaging using CT.

机构信息

Department of Physics, Case Western Reserve University, Cleveland, OH, 44106, USA.

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.

出版信息

Med Phys. 2019 Apr;46(4):1648-1662. doi: 10.1002/mp.13402. Epub 2019 Mar 7.

Abstract

PURPOSE

Computed tomography myocardial perfusion imaging (CT-MPI) and coronary CTA have the potential to make CT an ideal noninvasive imaging gatekeeper exam for invasive coronary angiography. However, beam hardening (BH) artifacts prevent accurate blood flow calculation in CT-MPI. BH correction methods require either energy-sensitive CT, not widely available, or typically, a calibration-based method in conventional CT. We propose a calibration-free, automatic BH correction (ABHC) method suitable for CT-MPI and evaluate its ability to reduce BH artifacts in single "static-perfusion" images and to create accurate myocardial blood flow (MBF) in dynamic CT-MPI.

METHODS

In the algorithm, we used input CT DICOM images and iteratively optimized parameters in a polynomial BH correction until a BH-sensitive cost function was minimized on output images. An input image was segmented into a soft tissue image and a highly attenuating material (HAM) image containing bones and regions of high iodine concentrations, using mean HU and temporal enhancement properties. We forward projected HAM, corrected projection values according to a polynomial correction, and reconstructed a correction image to obtain the current iteration's BH corrected image. The cost function was sensitive to BH streak artifacts and cupping. We evaluated the algorithm on simulated CT and physical phantom images, and on preclinical porcine with optional coronary obstruction and clinical CT-MPI data. Assessments included measures of BH artifact in single images as well as MBF estimates. We obtained CT images on a prototype spectral detector CT (SDCT, Philips Healthcare) scanner that provided both conventional and virtual keV images, allowing us to quantitatively compare corrected CT images to virtual keV images. To stress test the method, we evaluated results on images from a different scanner (iCT, Philips Healthcare) and different kVp values.

RESULTS

In a CT-simulated digital phantom consisting of water with iodine cylinder insets, BH streak artifacts between simulated iodine inserts were reduced from 13 ± 2 to 0 ± 1 HU. In a similar physical phantom having higher iodine concentrations, BH streak artifacts were reduced from 48 ± 6 to 1 ± 5 HU and cupping was reduced by 86%, from 248 to 23 HU. In preclinical CT-MPI images without coronary obstruction, BH artifact was reduced from 24 ± 6 HU to less than 5 ± 4 HU at peak enhancement. Standard deviation across different regions of interest (ROI) along the myocardium was reduced from 13.26 to 6.86 HU for ABHC, comparing favorably to measurements in the corresponding virtual keV image. Corrections greatly reduced variations in preclinical MBF maps as obtained in normal animals without obstruction (FFR = 1). Coefficients of variations were 22% (conventional CT), 9% (ABHC), and 5% (virtual keV). Moreover, variations in flow tended to be localized after ABHC, giving result which would not be confused with a flow deficit in a coronary vessel territory.

CONCLUSION

The automated algorithm can be used to reduce BH artifact in conventional CT and improve CT-MPI accuracy particularly by removing regions of reduced estimated flow which might be misinterpreted as flow deficits.

摘要

目的

计算机断层心肌灌注成像(CT-MPI)和冠状动脉 CTA 有可能使 CT 成为一种理想的非侵入性成像门控检查方法,用于进行有创冠状动脉造影。然而,束硬化(BH)伪影会阻止 CT-MPI 中准确的血流计算。BH 校正方法需要能量敏感 CT,这种 CT 尚未广泛普及,或者通常需要在常规 CT 中使用基于校准的方法。我们提出了一种适用于 CT-MPI 的无校准、自动 BH 校正(ABHC)方法,并评估了它在单张“静态灌注”图像中减少 BH 伪影和在动态 CT-MPI 中创建准确的心肌血流(MBF)的能力。

方法

在该算法中,我们使用输入的 CT DICOM 图像,并在多项式 BH 校正中迭代地优化参数,直到输出图像上的 BH 敏感代价函数最小化。输入图像被分割为软组织图像和包含骨骼和高碘浓度区域的高衰减材料(HAM)图像,使用平均 HU 和时间增强特性。我们对 HAM 进行前向投影,根据多项式校正校正投影值,并重建校正图像以获得当前迭代的 BH 校正图像。代价函数对 BH 条纹伪影和杯状伪影敏感。我们在模拟 CT 和物理体模图像以及具有可选冠状动脉阻塞的临床前猪和临床 CT-MPI 数据上评估了该算法。评估包括对单张图像中的 BH 伪影进行评估以及对 MBF 估计进行评估。我们在原型光谱探测器 CT(SDCT,飞利浦医疗保健)扫描仪上获得 CT 图像,该扫描仪提供了常规和虚拟 keV 图像,使我们能够将校正后的 CT 图像与虚拟 keV 图像进行定量比较。为了对该方法进行压力测试,我们在不同的扫描仪(iCT,飞利浦医疗保健)和不同的 kVp 值的图像上评估了结果。

结果

在由具有碘圆柱插件的水组成的 CT 模拟数字体模中,模拟碘插件之间的 BH 条纹伪影从 13 ± 2 减少到 0 ± 1 HU。在具有更高碘浓度的类似物理体模中,BH 条纹伪影从 48 ± 6 减少到 1 ± 5 HU,杯状伪影减少了 86%,从 248 减少到 23 HU。在没有冠状动脉阻塞的临床前 CT-MPI 图像中,BH 伪影在峰值增强时从 24 ± 6 HU 减少到小于 5 ± 4 HU。ABHC 可降低心肌不同感兴趣区域(ROI)之间的标准差,从 13.26 减少到 6.86 HU,与相应虚拟 keV 图像中的测量结果相比具有优势。校正后,在没有阻塞的正常动物中,MBF 地图的变化大大减少(FFR = 1)。变异系数为 22%(常规 CT)、9%(ABHC)和 5%(虚拟 keV)。此外,ABHC 后,流动的变化趋于局部化,不会与冠状动脉血管区域的血流不足相混淆。

结论

该自动算法可用于减少常规 CT 中的 BH 伪影,并提高 CT-MPI 的准确性,特别是通过消除可能被错误解释为血流不足的估计流量减少的区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d834/6487949/44a80f8997e4/MP-46-1648-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验