Suppr超能文献

一种用于生成具有确定泛素链的蛋白质的快速通用方法。

A Rapid and Versatile Method for Generating Proteins with Defined Ubiquitin Chains.

作者信息

Martinez-Fonts Kirby, Matouschek Andreas

机构信息

Department of Molecular Biosciences, The University of Texas at Austin , Austin, Texas 78712, United States.

Department of Molecular Biosciences, Northwestern University , Evanston, Illinois 60208, United States.

出版信息

Biochemistry. 2016 Mar 29;55(12):1898-908. doi: 10.1021/acs.biochem.5b01310. Epub 2016 Mar 17.

Abstract

Ubiquitin and polyubiquitin chains target proteins for a wide variety of cellular processes. Ubiquitin-mediated targeting is regulated by the lysine through which the ubiquitins are linked as well as the broader ubiquitin landscape on the protein. The mechanisms of this regulation are not fully understood. For example, the canonical proteasome targeting signal is a lysine 48-linked polyubiquitin chain, and the canonical endocytosis signal is a lysine 63-linked polyubiquitin chain. However, lysine 63-linked polyubiquitin chains can also target substrates for degradation. Biochemical studies of ubiquitinated proteins have been limited by the difficulty of building proteins with well-defined polyubiquitin chains. Here we describe an efficient and versatile method for synthesizing ubiquitin chains of defined linkage and length. The synthesized ubiquitin chains are then attached to any protein containing a ubiquitin moiety. These proteins can be used to study ubiquitin targeting in in vitro assays in the tightly controlled manner required for biochemical studies.

摘要

泛素和多聚泛素链将蛋白质靶向多种细胞过程。泛素介导的靶向作用受泛素连接所通过的赖氨酸以及蛋白质上更广泛的泛素格局调控。这种调控机制尚未完全明确。例如,典型的蛋白酶体靶向信号是赖氨酸48连接的多聚泛素链,而典型的内吞作用信号是赖氨酸63连接的多聚泛素链。然而,赖氨酸63连接的多聚泛素链也能将底物靶向降解。对泛素化蛋白质的生化研究因构建具有明确多聚泛素链的蛋白质存在困难而受到限制

相似文献

1
A Rapid and Versatile Method for Generating Proteins with Defined Ubiquitin Chains.
Biochemistry. 2016 Mar 29;55(12):1898-908. doi: 10.1021/acs.biochem.5b01310. Epub 2016 Mar 17.
2
Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome.
EMBO J. 2009 Feb 18;28(4):359-71. doi: 10.1038/emboj.2008.305. Epub 2009 Jan 15.
3
Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome.
Mol Cell. 2008 Nov 7;32(3):415-25. doi: 10.1016/j.molcel.2008.10.011.
4
Inhibition of the 26 S proteasome by polyubiquitin chains synthesized to have defined lengths.
J Biol Chem. 1997 Sep 19;272(38):23712-21. doi: 10.1074/jbc.272.38.23712.
5
Mapping the interactions between Lys48 and Lys63-linked di-ubiquitins and a ubiquitin-interacting motif of S5a.
J Mol Biol. 2007 May 4;368(3):753-66. doi: 10.1016/j.jmb.2007.02.037. Epub 2007 Feb 22.
6
Reading the ubiquitin postal code.
Curr Opin Struct Biol. 2011 Dec;21(6):792-801. doi: 10.1016/j.sbi.2011.09.009. Epub 2011 Oct 27.
7
Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling.
J Biol Chem. 2004 Feb 20;279(8):7055-63. doi: 10.1074/jbc.M309184200. Epub 2003 Nov 25.
8
In vitro assembly and recognition of Lys-63 polyubiquitin chains.
J Biol Chem. 2001 Jul 27;276(30):27936-43. doi: 10.1074/jbc.M103378200. Epub 2001 May 21.
9
Together, Rpn10 and Dsk2 can serve as a polyubiquitin chain-length sensor.
Mol Cell. 2009 Dec 25;36(6):1018-33. doi: 10.1016/j.molcel.2009.11.012.
10
Recognition of the polyubiquitin proteolytic signal.
EMBO J. 2000 Jan 4;19(1):94-102. doi: 10.1093/emboj/19.1.94.

引用本文的文献

1
UbiREAD deciphers proteasomal degradation code of homotypic and branched K48 and K63 ubiquitin chains.
Mol Cell. 2025 Apr 3;85(7):1467-1476.e6. doi: 10.1016/j.molcel.2025.02.021. Epub 2025 Mar 24.
2
Convergent Assembly of Homo- and Heterotypic Ubiquitin Chains from Functionalized, Expressed Monomers via Thiol-Ene Chemistry.
Angew Chem Int Ed Engl. 2025 May;64(21):e202502638. doi: 10.1002/anie.202502638. Epub 2025 Apr 7.
3
Ubiquitination and Metabolic Disease.
Adv Exp Med Biol. 2024;1466:47-79. doi: 10.1007/978-981-97-7288-9_4.
4
Sortase mediated protein ubiquitination with defined chain length and topology.
RSC Chem Biol. 2024 Feb 7;5(4):321-327. doi: 10.1039/d3cb00229b. eCollection 2024 Apr 3.
5
Getting to the Root of Branched Ubiquitin Chains: A Review of Current Methods and Functions.
Methods Mol Biol. 2023;2602:19-38. doi: 10.1007/978-1-0716-2859-1_2.
6
Biology of the Extracellular Proteasome.
Biomolecules. 2022 Apr 21;12(5):619. doi: 10.3390/biom12050619.
7
The chemical biology of ubiquitin.
Biochim Biophys Acta Gen Subj. 2022 Mar;1866(3):130079. doi: 10.1016/j.bbagen.2021.130079. Epub 2021 Dec 29.
8
Structure, Dynamics and Function of the 26S Proteasome.
Subcell Biochem. 2021;96:1-151. doi: 10.1007/978-3-030-58971-4_1.
9
Use of Multiple Ion Fragmentation Methods to Identify Protein Cross-Links and Facilitate Comparison of Data Interpretation Algorithms.
J Proteome Res. 2020 Jul 2;19(7):2758-2771. doi: 10.1021/acs.jproteome.0c00111. Epub 2020 Jun 4.

本文引用的文献

1
The missing links to link ubiquitin: Methods for the enzymatic production of polyubiquitin chains.
Anal Biochem. 2016 Jan 1;492:82-90. doi: 10.1016/j.ab.2015.09.013. Epub 2015 Oct 20.
2
Click chemistry for targeted protein ubiquitylation and ubiquitin chain formation.
Nat Protoc. 2015 Oct;10(10):1594-611. doi: 10.1038/nprot.2015.106. Epub 2015 Sep 24.
3
The Proteasome Distinguishes between Heterotypic and Homotypic Lysine-11-Linked Polyubiquitin Chains.
Cell Rep. 2015 Jul 28;12(4):545-53. doi: 10.1016/j.celrep.2015.06.061. Epub 2015 Jul 16.
4
Assembly and specific recognition of k29- and k33-linked polyubiquitin.
Mol Cell. 2015 Apr 2;58(1):95-109. doi: 10.1016/j.molcel.2015.01.042. Epub 2015 Mar 5.
5
Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations.
Biochem J. 2015 Apr 15;467(2):345-52. doi: 10.1042/BJ20141502.
7
Chemoenzymatic synthesis of bifunctional polyubiquitin substrates for monitoring ubiquitin chain remodeling.
Chembiochem. 2014 Jul 21;15(11):1563-8. doi: 10.1002/cbic.201402059. Epub 2014 Jun 24.
8
Enhanced protein degradation by branched ubiquitin chains.
Cell. 2014 May 8;157(4):910-21. doi: 10.1016/j.cell.2014.03.037.
9
Nonenzymatic polyubiquitination of expressed proteins.
J Am Chem Soc. 2014 Feb 12;136(6):2665-73. doi: 10.1021/ja412594d. Epub 2014 Jan 31.
10
Non-canonical ubiquitylation: mechanisms and consequences.
Int J Biochem Cell Biol. 2013 Aug;45(8):1833-42. doi: 10.1016/j.biocel.2013.05.026. Epub 2013 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验