Suppr超能文献

下肢周围神经的超声追踪:图文并茂的文章及视频演示

Sonographic Tracking of the Lower Limb Peripheral Nerves: A Pictorial Essay and Video Demonstration.

作者信息

Hung Chen-Yu, Hsiao Ming-Yen, Özçakar Levent, Chang Ke-Vin, Wu Chueh-Hung, Wang Tyng-Guey, Chen Wen-Shiang

机构信息

From the Department of Physical Medicine and Rehabilitation and Community and Geriatric Research Center, Bei-Hu Branch, Taipei, Taiwan (C-YH, K-VC); Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan (K-VC); Department of Physical Medicine and Rehabilitation, Hacettepe University Medical School, Ankara, Turkey (LÖ); and Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (M-YH, C-HW, T-GW, W-SC).

出版信息

Am J Phys Med Rehabil. 2016 Sep;95(9):698-708. doi: 10.1097/PHM.0000000000000463.

Abstract

Compared with the upper limbs, sonographic tracking of peripheral nerves in the lower limbs is more challenging. The overlying muscles are larger, hindering visualization of the deeply embedded nerves by using a linear transducer. The use of a curvilinear transducer-providing an extended view with better penetration for the field of interest-may be useful for scanning the nerves in the hip and thigh. Application of the Doppler mode helps localization of the target nerve by identifying the accompanying vessels. Aiming to demonstrate the relevant tracking techniques, the present article comprises a series of ultrasound images and videos showing how to scan the nerves in the lower limb, that is, femoral, obturator, pudendal, lateral femoral cutaneous, sciatic, saphenous, sural, tibial, and peroneal nerves.

摘要

与上肢相比,下肢周围神经的超声追踪更具挑战性。下肢上方的肌肉更大,使用线性换能器会妨碍对深部神经的可视化。使用曲线换能器——能提供更广阔视野且对感兴趣区域有更好穿透性——可能有助于扫描髋部和大腿的神经。应用多普勒模式通过识别伴行血管来帮助定位目标神经。为了展示相关的追踪技术,本文包含一系列超声图像和视频,展示了如何扫描下肢的神经,即股神经、闭孔神经、阴部神经、股外侧皮神经、坐骨神经、隐神经、腓肠神经、胫神经和腓总神经。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验