Johnson Carolyn M, Peckler Hannah, Tai Lung-Hao, Wilbrecht Linda
UCSF Neuroscience Graduate Program, University of California San Francisco, San Francisco, California 94158, USA.
Department of Psychology, University of California Berkeley, Berkeley, California 94720, USA.
Nat Commun. 2016 Mar 7;7:10785. doi: 10.1038/ncomms10785.
Rules encompass cue-action-outcome associations used to guide decisions and strategies in a specific context. Subregions of the frontal cortex including the orbitofrontal cortex (OFC) and dorsomedial prefrontal cortex (dmPFC) are implicated in rule learning, although changes in structural connectivity underlying rule learning are poorly understood. We imaged OFC axonal projections to dmPFC during training in a multiple choice foraging task and used a reinforcement learning model to quantify explore-exploit strategy use and prediction error magnitude. Here we show that rule training, but not experience of reward alone, enhances OFC bouton plasticity. Baseline bouton density and gains during training correlate with rule exploitation, while bouton loss correlates with exploration and scales with the magnitude of experienced prediction errors. We conclude that rule learning sculpts frontal cortex interconnectivity and adjusts a thermostat for the explore-exploit balance.
规则包含用于在特定情境中指导决策和策略的线索-行动-结果关联。额叶皮质的亚区域,包括眶额叶皮质(OFC)和背内侧前额叶皮质(dmPFC),与规则学习有关,尽管对规则学习背后的结构连接变化了解甚少。我们在多项选择觅食任务的训练过程中对OFC到dmPFC的轴突投射进行成像,并使用强化学习模型来量化探索-利用策略的使用和预测误差大小。在这里,我们表明规则训练,而不仅仅是奖励体验,会增强OFC终扣可塑性。训练期间的基线终扣密度和增益与规则利用相关,而终扣损失与探索相关,并与所经历的预测误差大小成比例。我们得出结论,规则学习塑造了额叶皮质的互连性,并调整了探索-利用平衡的调节器。