Suppr超能文献

高级别浆液性卵巢癌中miRNA-mRNA相互作用的模块化和动态性及其预后意义。

The modularity and dynamicity of miRNA-mRNA interactions in high-grade serous ovarian carcinomas and the prognostic implication.

作者信息

Zhang Wensheng, Edwards Andrea, Fan Wei, Flemington Erik K, Zhang Kun

机构信息

Department of Computer Science, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States.

Big Data Lab, Baidu Research, 1195 Bordeaux Dr., Sunnyvale, CA 94089, United States.

出版信息

Comput Biol Chem. 2016 Aug;63:3-14. doi: 10.1016/j.compbiolchem.2016.02.005. Epub 2016 Feb 27.

Abstract

Ovarian carcinoma is the fifth-leading cause of cancer death among women in the United States. Major reasons for this persistent mortality include the poor understanding of the underlying biology and a lack of reliable biomarkers. Previous studies have shown that aberrantly expressed MicroRNAs (miRNAs) are involved in carcinogenesis and tumor progression by post-transcriptionally regulating gene expression. However, the interference of miRNAs in tumorigenesis is quite complicated and far from being fully understood. In this work, by an integrative analysis of mRNA expression, miRNA expression and clinical data published by The Cancer Genome Atlas (TCGA), we studied the modularity and dynamicity of miRNA-mRNA interactions and the prognostic implications in high-grade serous ovarian carcinomas. With the top transcriptional correlations (Bonferroni-adjusted p-value<0.01) as inputs, we identified five miRNA-mRNA module pairs (MPs), each of which included one positive-connection (correlation) module and one negative-connection (correlation) module. The number of miRNAs or mRNAs in each module varied from 3 to 7 or from 2 to 873. Among the four major negative-connection modules, three fit well with the widely accepted miRNA-mediated post-transcriptional regulation theory. These modules were enriched with the genes relevant to cell cycle and immune response. Moreover, we proposed two novel algorithms to reveal the group or sample specific dynamic regulations between these two RNA classes. The obtained miRNA-mRNA dynamic network contains 3350 interactions captured across different cancer progression stages or tumor grades. We found that those dynamic interactions tended to concentrate on a few miRNAs (e.g. miRNA-936), and were more likely present on the miRNA-mRNA pairs outside the discovered modules. In addition, we also pinpointed a robust prognostic signature consisting of 56 modular protein-coding genes, whose co-expression patterns were predictive for the survival time of ovarian cancer patients in multiple independent cohorts.

摘要

卵巢癌是美国女性癌症死亡的第五大主要原因。导致这种持续高死亡率的主要原因包括对潜在生物学机制了解不足以及缺乏可靠的生物标志物。先前的研究表明,异常表达的微小RNA(miRNA)通过转录后调控基因表达参与致癌作用和肿瘤进展。然而,miRNA在肿瘤发生中的干扰作用相当复杂,远未被完全理解。在这项工作中,通过对癌症基因组图谱(TCGA)公布的mRNA表达、miRNA表达和临床数据进行综合分析,我们研究了miRNA-mRNA相互作用的模块性和动态性以及在高级别浆液性卵巢癌中的预后意义。以最高转录相关性(Bonferroni校正p值<0.01)为输入,我们鉴定出五对miRNA-mRNA模块对(MP),每对包括一个正连接(相关性)模块和一个负连接(相关性)模块。每个模块中miRNA或mRNA的数量从3到7或从2到873不等。在四个主要的负连接模块中,有三个与广泛接受的miRNA介导的转录后调控理论非常吻合。这些模块富含与细胞周期和免疫反应相关的基因。此外,我们提出了两种新算法来揭示这两类RNA之间的组或样本特异性动态调控。获得的miRNA-mRNA动态网络包含在不同癌症进展阶段或肿瘤分级中捕获的3350个相互作用。我们发现这些动态相互作用倾向于集中在少数miRNA(如miRNA-936)上,并且更可能出现在已发现模块之外的miRNA-mRNA对上。此外,我们还确定了一个由56个模块化蛋白质编码基因组成的强大预后特征,其共表达模式可预测多个独立队列中卵巢癌患者的生存时间。

相似文献

6
Characterization of microRNA expression in serous ovarian carcinoma.浆液性卵巢癌中微小RNA表达的特征分析
Int J Mol Med. 2014 Aug;34(2):491-8. doi: 10.3892/ijmm.2014.1813. Epub 2014 Jun 17.
9
Gene-microRNA network module analysis for ovarian cancer.卵巢癌的基因-微小RNA网络模块分析
BMC Syst Biol. 2016 Dec 23;10(Suppl 4):117. doi: 10.1186/s12918-016-0357-1.

本文引用的文献

1
Cancer statistics, 2014.癌症统计数据,2014 年。
CA Cancer J Clin. 2014 Jan-Feb;64(1):9-29. doi: 10.3322/caac.21208. Epub 2014 Jan 7.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验