Suppr超能文献

骨骼祖细胞中的NOTCH信号传导对骨折修复至关重要。

NOTCH signaling in skeletal progenitors is critical for fracture repair.

作者信息

Wang Cuicui, Inzana Jason A, Mirando Anthony J, Ren Yinshi, Liu Zhaoyang, Shen Jie, O'Keefe Regis J, Awad Hani A, Hilton Matthew J

出版信息

J Clin Invest. 2016 Apr 1;126(4):1471-81. doi: 10.1172/JCI80672. Epub 2016 Mar 7.

Abstract

Fracture nonunions develop in 10%-20% of patients with fractures, resulting in prolonged disability. Current data suggest that bone union during fracture repair is achieved via proliferation and differentiation of skeletal progenitors within periosteal and soft tissues surrounding bone, while bone marrow stromal/stem cells (BMSCs) and other skeletal progenitors may also contribute. The NOTCH signaling pathway is a critical maintenance factor for BMSCs during skeletal development, although the precise role for NOTCH and the requisite nature of BMSCs following fracture is unknown. Here, we evaluated whether NOTCH and/or BMSCs are required for fracture repair by performing nonstabilized and stabilized fractures on NOTCH-deficient mice with targeted deletion of RBPjk in skeletal progenitors, maturing osteoblasts, and committed chondrocytes. We determined that removal of NOTCH signaling in BMSCs and subsequent depletion of this population result in fracture nonunion, as the fracture repair process was normal in animals harboring either osteoblast- or chondrocyte-specific deletion of RBPjk. Together, this work provides a genetic model of a fracture nonunion and demonstrates the requirement for NOTCH and BMSCs in fracture repair, irrespective of fracture stability and vascularity.

摘要

10%-20%的骨折患者会发生骨折不愈合,导致残疾时间延长。目前的数据表明,骨折修复过程中的骨愈合是通过骨周围骨膜和软组织中骨骼祖细胞的增殖和分化实现的,而骨髓基质/干细胞(BMSC)和其他骨骼祖细胞也可能发挥作用。NOTCH信号通路是骨骼发育过程中BMSC的关键维持因子,尽管NOTCH的确切作用以及骨折后BMSC的必需性质尚不清楚。在此,我们通过对骨骼祖细胞、成熟成骨细胞和定向软骨细胞中RBPjk靶向缺失的NOTCH缺陷小鼠进行非稳定和稳定骨折,评估了骨折修复是否需要NOTCH和/或BMSC。我们确定,BMSC中NOTCH信号的去除以及随后该群体的耗尽会导致骨折不愈合,因为在成骨细胞或软骨细胞特异性缺失RBPjk的动物中,骨折修复过程是正常的。总之,这项工作提供了一个骨折不愈合的遗传模型,并证明了NOTCH和BMSC在骨折修复中的必要性,而与骨折稳定性和血管情况无关。

相似文献

1
NOTCH signaling in skeletal progenitors is critical for fracture repair.
J Clin Invest. 2016 Apr 1;126(4):1471-81. doi: 10.1172/JCI80672. Epub 2016 Mar 7.
3
Bone: Cranking fracture repair up a notch.
Nat Rev Endocrinol. 2016 May;12(5):248. doi: 10.1038/nrendo.2016.49. Epub 2016 Mar 29.
5
Immunolocalization of BMPs, BMP antagonists, receptors, and effectors during fracture repair.
Bone. 2010 Mar;46(3):841-51. doi: 10.1016/j.bone.2009.11.005. Epub 2009 Nov 11.
6
Simvastatin enhances bone marrow stromal cell differentiation into endothelial cells via notch signaling pathway.
Am J Physiol Cell Physiol. 2009 Mar;296(3):C535-43. doi: 10.1152/ajpcell.00310.2008. Epub 2008 Dec 24.
7
Sox9 positive periosteal cells in fracture repair of the adult mammalian long bone.
Bone. 2017 Oct;103:12-19. doi: 10.1016/j.bone.2017.06.008. Epub 2017 Jun 13.
9
Gli1 identifies osteogenic progenitors for bone formation and fracture repair.
Nat Commun. 2017 Dec 11;8(1):2043. doi: 10.1038/s41467-017-02171-2.
10
Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation.
Nat Med. 2008 Mar;14(3):306-14. doi: 10.1038/nm1716. Epub 2008 Feb 24.

引用本文的文献

1
Biomaterial-mediated Cell Atlas: an insight from single-cell and spatial transcriptomics.
Bioact Mater. 2025 Aug 8;54:1-33. doi: 10.1016/j.bioactmat.2025.07.047. eCollection 2025 Dec.
2
Structurally and Functionally Adaptive Biomimetic Periosteum: Materials, Fabrication, and Construction Strategies.
Exploration (Beijing). 2025 Feb 27;5(3):70005. doi: 10.1002/EXP.70005. eCollection 2025 Jun.
5
Addressing the challenges of infectious bone defects: a review of recent advances in bifunctional biomaterials.
J Nanobiotechnology. 2025 Mar 29;23(1):257. doi: 10.1186/s12951-025-03295-0.
6
Landscape analysis of m6A modification reveals the dysfunction of bone metabolism in osteoporosis mice.
Heliyon. 2025 Jan 21;11(3):e42123. doi: 10.1016/j.heliyon.2025.e42123. eCollection 2025 Feb 15.
7
Notch signaling in osteoblast progenitor cells is required for BMP-induced bone formation.
Bone. 2025 May;194:117425. doi: 10.1016/j.bone.2025.117425. Epub 2025 Feb 18.
9
Nicotinamide mononucleotide enhances fracture healing by promoting skeletal stem cell proliferation.
Theranostics. 2024 Sep 16;14(15):5999-6015. doi: 10.7150/thno.98149. eCollection 2024.
10
Accelerated Bone Healing via Electrical Stimulation.
Adv Sci (Weinh). 2024 Aug 8:e2404190. doi: 10.1002/advs.202404190.

本文引用的文献

2
Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow.
Cell Stem Cell. 2014 Aug 7;15(2):154-68. doi: 10.1016/j.stem.2014.06.008. Epub 2014 Jun 19.
4
Structural and biomechanical responses of osseous healing: a novel murine nonunion model.
J Orthop Traumatol. 2013 Dec;14(4):247-57. doi: 10.1007/s10195-013-0269-4. Epub 2013 Aug 30.
6
A murine femoral segmental defect model for bone tissue engineering using a novel rigid internal fixation system.
J Surg Res. 2013 Aug;183(2):493-502. doi: 10.1016/j.jss.2013.02.041. Epub 2013 Mar 15.
7
Physiological notch signaling maintains bone homeostasis via RBPjk and Hey upstream of NFATc1.
PLoS Genet. 2012;8(3):e1002577. doi: 10.1371/journal.pgen.1002577. Epub 2012 Mar 22.
10
Notch signaling components are upregulated during both endochondral and intramembranous bone regeneration.
J Orthop Res. 2012 Feb;30(2):296-303. doi: 10.1002/jor.21518. Epub 2011 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验