Biggs Bradley Walters, Lim Chin Giaw, Sagliani Kristen, Shankar Smriti, Stephanopoulos Gregory, De Mey Marjan, Ajikumar Parayil Kumaran
Manus Biosynthesis, Cambridge, MA 02138; Masters in Biotechnology Program, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208;
Manus Biosynthesis, Cambridge, MA 02138;
Proc Natl Acad Sci U S A. 2016 Mar 22;113(12):3209-14. doi: 10.1073/pnas.1515826113. Epub 2016 Mar 7.
Recent advances in metabolic engineering have demonstrated the potential to exploit biological chemistry for the synthesis of complex molecules. Much of the progress to date has leveraged increasingly precise genetic tools to control the transcription and translation of enzymes for superior biosynthetic pathway performance. However, applying these approaches and principles to the synthesis of more complex natural products will require a new set of tools for enabling various classes of metabolic chemistries (i.e., cyclization, oxygenation, glycosylation, and halogenation) in vivo. Of these diverse chemistries, oxygenation is one of the most challenging and pivotal for the synthesis of complex natural products. Here, using Taxol as a model system, we use nature's favored oxygenase, the cytochrome P450, to perform high-level oxygenation chemistry in Escherichia coli. An unexpected coupling of P450 expression and the expression of upstream pathway enzymes was discovered and identified as a key obstacle for functional oxidative chemistry. By optimizing P450 expression, reductase partner interactions, and N-terminal modifications, we achieved the highest reported titer of oxygenated taxanes (∼570 ± 45 mg/L) in E. coli. Altogether, this study establishes E. coli as a tractable host for P450 chemistry, highlights the potential magnitude of protein interdependency in the context of synthetic biology and metabolic engineering, and points to a promising future for the microbial synthesis of complex chemical entities.
代谢工程领域的最新进展已证明利用生物化学合成复杂分子的潜力。迄今为止,大部分进展都借助了日益精确的遗传工具来控制酶的转录和翻译,以实现更优的生物合成途径性能。然而,将这些方法和原理应用于合成更复杂的天然产物,将需要一套新的工具来在体内实现各类代谢化学反应(即环化、氧化、糖基化和卤化)。在这些多样的化学反应中,氧化反应是合成复杂天然产物最具挑战性且最为关键的反应之一。在此,我们以紫杉醇为模型系统,利用自然界中常用的加氧酶——细胞色素P450,在大肠杆菌中进行高水平的氧化化学反应。我们发现了P450表达与上游途径酶表达的意外偶联,并将其确定为功能性氧化化学的关键障碍。通过优化P450表达、还原酶伴侣相互作用以及N端修饰,我们在大肠杆菌中实现了已报道的最高氧化紫杉烷产量(约570±45毫克/升)。总之,本研究确立了大肠杆菌作为进行P450化学反应的易处理宿主,凸显了合成生物学和代谢工程背景下蛋白质相互依赖性的潜在程度,并为复杂化学实体的微生物合成指明了充满希望的未来。