Padín-Irizarry Vivian, Colón-Lorenzo Emilee E, Vega-Rodríguez Joel, Castro María Del R, González-Méndez Ricardo, Ayala-Peña Sylvette, Serrano Adelfa E
Department of Microbiology and Medical Zoology, University of Puerto Rico, School of Medicine, San Juan 00936-5067, Puerto Rico.
Department of Pharmacology and Toxicology, University of Puerto Rico, School of Medicine, San Juan 00936-5067, Puerto Rico.
Free Radic Biol Med. 2016 Jun;95:43-54. doi: 10.1016/j.freeradbiomed.2016.02.032. Epub 2016 Mar 4.
Plasmodium parasites are exposed to endogenous and exogenous oxidative stress during their complex life cycle. To minimize oxidative damage, the parasites use glutathione (GSH) and thioredoxin (Trx) as primary antioxidants. We previously showed that disruption of the Plasmodium berghei gamma-glutamylcysteine synthetase (pbggcs-ko) or the glutathione reductase (pbgr-ko) genes resulted in a significant reduction of GSH in intraerythrocytic stages, and a defect in growth in the pbggcs-ko parasites. In this report, time course experiments of parasite intraerythrocytic development and morphological studies showed a growth delay during the ring to schizont progression. Morphological analysis shows a significant reduction in size (diameter) of trophozoites and schizonts with increased number of cytoplasmic vacuoles in the pbggcs-ko parasites in comparison to the wild type (WT). Furthermore, the pbggcs-ko mutants exhibited an impaired response to oxidative stress and increased levels of nuclear DNA (nDNA) damage. Reduced GSH levels did not result in mitochondrial DNA (mtDNA) damage or protein carbonylations in neither pbggcs-ko nor pbgr-ko parasites. In addition, the pbggcs-ko mutant parasites showed an increase in mRNA expression of genes involved in oxidative stress detoxification and DNA synthesis, suggesting a potential compensatory mechanism to allow for parasite proliferation. These results reveal that low GSH levels affect parasite development through the impairment of oxidative stress reduction systems and damage to the nDNA. Our studies provide new insights into the role of the GSH antioxidant system in the intraerythrocytic development of Plasmodium parasites, with potential translation into novel pharmacological interventions.
疟原虫寄生虫在其复杂的生命周期中会受到内源性和外源性氧化应激的影响。为了将氧化损伤降至最低,这些寄生虫将谷胱甘肽(GSH)和硫氧还蛋白(Trx)用作主要抗氧化剂。我们之前的研究表明,破坏伯氏疟原虫γ-谷氨酰半胱氨酸合成酶(pbggcs-ko)或谷胱甘肽还原酶(pbgr-ko)基因会导致红细胞内阶段的GSH显著减少,并且pbggcs-ko寄生虫的生长出现缺陷。在本报告中,寄生虫红细胞内发育的时间进程实验和形态学研究表明,从环状体到裂殖体的发育过程中生长延迟。形态学分析显示,与野生型(WT)相比,pbggcs-ko寄生虫的滋养体和裂殖体大小(直径)显著减小,细胞质空泡数量增加。此外,pbggcs-ko突变体对氧化应激的反应受损,核DNA(nDNA)损伤水平增加。GSH水平降低在pbggcs-ko和pbgr-ko寄生虫中均未导致线粒体DNA(mtDNA)损伤或蛋白质羰基化。此外,pbggcs-ko突变体寄生虫中参与氧化应激解毒和DNA合成的基因的mRNA表达增加,表明存在潜在的补偿机制以允许寄生虫增殖。这些结果表明,低GSH水平通过损害氧化应激还原系统和对nDNA的损伤来影响寄生虫发育。我们的研究为GSH抗氧化系统在疟原虫寄生虫红细胞内发育中的作用提供了新的见解,具有转化为新型药物干预措施的潜力。