Suppr超能文献

线粒体 DNA 损伤与亨廷顿病中线粒体生物能量的降低有关。

Mitochondrial DNA damage is associated with reduced mitochondrial bioenergetics in Huntington's disease.

机构信息

Buck Institute for Age Research, Novato, CA 94945, USA.

出版信息

Free Radic Biol Med. 2012 Oct 1;53(7):1478-88. doi: 10.1016/j.freeradbiomed.2012.06.008. Epub 2012 Jun 16.

Abstract

Oxidative stress and mitochondrial dysfunction have been implicated in the pathology of HD; however, the precise mechanisms by which mutant huntingtin modulates levels of oxidative damage in turn resulting in mitochondrial dysfunction are not known. We hypothesize that mutant huntingtin increases oxidative mtDNA damage leading to mitochondrial dysfunction. We measured nuclear and mitochondrial DNA lesions and mitochondrial bioenergetics in the STHdhQ7 and STHdhQ111 in vitro striatal model of HD. Striatal cells expressing mutant huntingtin show higher basal levels of mitochondrial-generated ROS and mtDNA lesions and a lower spare respiratory capacity. Silencing of APE1, the major mammalian apurinic/apyrimidinic (AP) endonuclease that participates in the base excision repair (BER) pathway, caused further reductions of spare respiratory capacity in the mutant huntingtin-expressing cells. Localization experiments show that APE1 increases in the mitochondria of wild-type Q7 cells but not in the mutant huntingtin Q111 cells after treatment with hydrogen peroxide. Moreover, these results are recapitulated in human HD striata and HD skin fibroblasts that show significant mtDNA damage (increased lesion frequency and mtDNA depletion) and significant decreases in spare respiratory capacity, respectively. These data suggest that mtDNA is a major target of mutant huntingtin-associated oxidative stress and may contribute to subsequent mitochondrial dysfunction and that APE1 (and, by extension, BER) is an important target in the maintenance of mitochondrial function in HD.

摘要

氧化应激和线粒体功能障碍与 HD 的病理学有关;然而,突变亨廷顿蛋白调节氧化损伤水平进而导致线粒体功能障碍的确切机制尚不清楚。我们假设突变亨廷顿蛋白增加氧化 mtDNA 损伤导致线粒体功能障碍。我们在 STHdhQ7 和 STHdhQ111 的体外纹状体 HD 模型中测量了核和线粒体 DNA 损伤和线粒体生物能。表达突变亨廷顿蛋白的纹状体细胞显示出更高的线粒体产生的 ROS 和 mtDNA 损伤的基础水平,以及更低的备用呼吸能力。APE1(主要的哺乳动物无嘌呤/无嘧啶(AP)内切酶,参与碱基切除修复(BER)途径)的沉默导致突变亨廷顿蛋白表达细胞的备用呼吸能力进一步降低。定位实验表明,APE1 在野生型 Q7 细胞的线粒体中增加,但在过氧化氢处理后的突变亨廷顿 Q111 细胞中不增加。此外,这些结果在人类 HD 纹状体和 HD 皮肤成纤维细胞中得到了再现,这些细胞显示出明显的 mtDNA 损伤(增加损伤频率和 mtDNA 耗竭)和备用呼吸能力显著降低。这些数据表明,mtDNA 是突变亨廷顿蛋白相关氧化应激的主要靶标,并可能导致随后的线粒体功能障碍,APE1(以及扩展到 BER)是维持 HD 中线粒体功能的重要靶标。

相似文献

引用本文的文献

本文引用的文献

3
Huntington's disease - neuropathology.亨廷顿舞蹈症 - 神经病理学
Handb Clin Neurol. 2011;100:83-100. doi: 10.1016/B978-0-444-52014-2.00004-5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验