Suppr超能文献

尿素分解生物矿化降低奇异变形杆菌生物膜对环丙沙星的敏感性。

Ureolytic Biomineralization Reduces Proteus mirabilis Biofilm Susceptibility to Ciprofloxacin.

作者信息

Li Xiaobao, Lu Nanxi, Brady Hannah R, Packman Aaron I

机构信息

Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA.

Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA

出版信息

Antimicrob Agents Chemother. 2016 Apr 22;60(5):2993-3000. doi: 10.1128/AAC.00203-16. Print 2016 May.

Abstract

Ureolytic biomineralization induced by urease-producing bacteria, particularly Proteus mirabilis, is responsible for the formation of urinary tract calculi and the encrustation of indwelling urinary catheters. Such microbial biofilms are challenging to eradicate and contribute to the persistence of catheter-associated urinary tract infections, but the mechanisms responsible for this recalcitrance remain obscure. In this study, we characterized the susceptibility of wild-type (ure+) and urease-negative (ure-) P. mirabilis biofilms to killing by ciprofloxacin. Ure+ biofilms produced fine biomineral precipitates that were homogeneously distributed within the biofilm biomass in artificial urine, while ure- biofilms did not produce biomineral deposits under identical growth conditions. Following exposure to ciprofloxacin, ure+ biofilms showed greater survival (less killing) than ure- biofilms, indicating that biomineralization protected biofilm-resident cells against the antimicrobial. To evaluate the mechanism responsible for this recalcitrance, we observed and quantified the transport of Cy5-conjugated ciprofloxacin into the biofilm by video confocal microscopy. These observations revealed that the reduced susceptibility of ure+ biofilms resulted from hindered delivery of ciprofloxacin into biomineralized regions of the biofilm. Further, biomineralization enhanced retention of viable cells on the surface following antimicrobial exposure. These findings together show that ureolytic biomineralization induced by P. mirabilis metabolism strongly regulates antimicrobial susceptibility by reducing internal solute transport and increasing biofilm stability.

摘要

由产脲酶细菌,特别是奇异变形杆菌诱导的尿素分解生物矿化作用,是导致尿路结石形成和留置导尿管结壳的原因。这类微生物生物膜难以根除,并导致与导尿管相关的尿路感染持续存在,但其顽固难除的机制仍不清楚。在本研究中,我们对野生型(ure+)和脲酶阴性(ure-)奇异变形杆菌生物膜对环丙沙星杀灭作用的敏感性进行了表征。在人工尿液中,ure+生物膜产生了细小的生物矿沉淀,这些沉淀均匀分布在生物膜生物质中,而ure-生物膜在相同生长条件下未产生生物矿沉积。暴露于环丙沙星后,ure+生物膜比ure-生物膜表现出更高的存活率(杀灭率更低),这表明生物矿化作用保护了生物膜内的细胞免受抗菌药物的影响。为了评估这种顽固难除的机制,我们通过视频共聚焦显微镜观察并量化了Cy5标记的环丙沙星向生物膜内的转运。这些观察结果表明,ure+生物膜敏感性降低是由于环丙沙星向生物膜矿化区域的递送受阻所致。此外,生物矿化作用增强了抗菌药物暴露后活细胞在表面的保留。这些发现共同表明,奇异变形杆菌代谢诱导的尿素分解生物矿化作用通过减少内部溶质转运和增加生物膜稳定性,强烈调节抗菌药物敏感性。

相似文献

1
Ureolytic Biomineralization Reduces Proteus mirabilis Biofilm Susceptibility to Ciprofloxacin.
Antimicrob Agents Chemother. 2016 Apr 22;60(5):2993-3000. doi: 10.1128/AAC.00203-16. Print 2016 May.
2
Biomineralization strongly modulates the formation of Proteus mirabilis and Pseudomonas aeruginosa dual-species biofilms.
FEMS Microbiol Ecol. 2016 Dec;92(12). doi: 10.1093/femsec/fiw189. Epub 2016 Oct 2.
3
Effects of ceftazidime and ciprofloxacin on biofilm formation in Proteus mirabilis rods.
J Antibiot (Tokyo). 2013 Oct;66(10):593-7. doi: 10.1038/ja.2013.59. Epub 2013 Jun 26.
4
Antimicrobial activities against biofilm formed by Proteus mirabilis isolates from wound and urinary tract infections.
Indian J Med Microbiol. 2012 Jan-Mar;30(1):76-80. doi: 10.4103/0255-0857.93044.
5
Antimicrobial activity Study of triclosan-loaded WBPU on Proteus mirabilis in vitro.
Int Urol Nephrol. 2017 Apr;49(4):563-571. doi: 10.1007/s11255-017-1532-z. Epub 2017 Feb 1.
6
Biofilm: Development and Therapeutic Strategies.
Front Cell Infect Microbiol. 2020 Aug 14;10:414. doi: 10.3389/fcimb.2020.00414. eCollection 2020.
8
Elucidating the genetic basis of crystalline biofilm formation in Proteus mirabilis.
Infect Immun. 2014 Apr;82(4):1616-26. doi: 10.1128/IAI.01652-13. Epub 2014 Jan 27.
10
Morphological changes in Proteus mirabilis O18 biofilm under the influence of a urease inhibitor and a homoserine lactone derivative.
Arch Microbiol. 2014 Mar;196(3):169-77. doi: 10.1007/s00203-014-0952-8. Epub 2014 Jan 31.

引用本文的文献

1
The roles of calcium signaling and calcium deposition in microbial multicellularity.
Trends Microbiol. 2023 Dec;31(12):1225-1237. doi: 10.1016/j.tim.2023.06.005. Epub 2023 Jul 8.
2
Infection responsive coatings to reduce biofilm formation and encrustation of urinary catheters.
J Appl Microbiol. 2023 Jun 1;134(6). doi: 10.1093/jambio/lxad121.
3
Recent Advances in the Control of Clinically Important Biofilms.
Int J Mol Sci. 2022 Aug 23;23(17):9526. doi: 10.3390/ijms23179526.
4
The roles of intracellular and extracellular calcium in biofilms.
iScience. 2022 Apr 27;25(6):104308. doi: 10.1016/j.isci.2022.104308. eCollection 2022 Jun 17.
5
Calcium carbonate mineralization is essential for biofilm formation and lung colonization.
iScience. 2022 Apr 11;25(5):104234. doi: 10.1016/j.isci.2022.104234. eCollection 2022 May 20.
6
A biogeographic 16S rRNA survey of bacterial communities of ureolytic biomineralization from California public restrooms.
PLoS One. 2022 Jan 14;17(1):e0262425. doi: 10.1371/journal.pone.0262425. eCollection 2022.
9
Biofilm: Development and Therapeutic Strategies.
Front Cell Infect Microbiol. 2020 Aug 14;10:414. doi: 10.3389/fcimb.2020.00414. eCollection 2020.
10
Micro-CT X-ray imaging exposes structured diffusion barriers within biofilms.
NPJ Biofilms Microbiomes. 2018 Apr 17;4:8. doi: 10.1038/s41522-018-0051-8. eCollection 2018.

本文引用的文献

1
Spatial patterns of carbonate biomineralization in biofilms.
Appl Environ Microbiol. 2015 Nov;81(21):7403-10. doi: 10.1128/AEM.01585-15. Epub 2015 Aug 14.
3
Urinary tract infections: epidemiology, mechanisms of infection and treatment options.
Nat Rev Microbiol. 2015 May;13(5):269-84. doi: 10.1038/nrmicro3432. Epub 2015 Apr 8.
4
[The role of primary care in the prevention and control of healthcare associated infections].
Rev Esc Enferm USP. 2014 Dec;48(6):1137-44. doi: 10.1590/S0080-623420140000700023.
6
Engineered applications of ureolytic biomineralization: a review.
Biofouling. 2013;29(6):715-33. doi: 10.1080/08927014.2013.796550.
7
The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin.
Environ Microbiol. 2013 Oct;15(10):2865-78. doi: 10.1111/1462-2920.12155. Epub 2013 Jun 10.
8
Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis.
Nat Rev Microbiol. 2012 Nov;10(11):743-54. doi: 10.1038/nrmicro2890. Epub 2012 Oct 8.
9
Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity.
Annu Rev Med. 2013;64:175-88. doi: 10.1146/annurev-med-042711-140023. Epub 2012 Aug 16.
10
Calcein labelling and electrophysiology: insights on coral tissue permeability and calcification.
Proc Biol Sci. 2012 Jan 7;279(1726):19-27. doi: 10.1098/rspb.2011.0733. Epub 2011 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验