Li Luping, Fang Yin, Xu Cheng, Zhao Yang, Zang Nanzhi, Jiang Peng, Ziegler Kirk J
Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA.
Nanotechnology. 2016 Apr 22;27(16):165303. doi: 10.1088/0957-4484/27/16/165303. Epub 2016 Mar 8.
Silicon nanowires (SiNWs) are appealing building blocks in various applications, including photovoltaics, photonics, and sensors. Fabricating SiNW arrays with diameters <100 nm remains challenging through conventional top-down approaches. In this work, chemical etching and thermal oxidation are combined to fabricate vertically aligned, sub-20 nm SiNW arrays. Defect-free SiNWs with diameters between 95 and 200 nm are first fabricated by nanosphere (NS) lithography and chemical etching. The key aspects for defect-free SiNW fabrication are identified as: (1) achieving a high etching selectivity during NS size reduction; (2) retaining the circular NS shape with smooth sidewalls; and (3) using a directional metal deposition technique. SiNWs with identical spacing but variable diameters are demonstrated by changing the reactive ion etching power. The diameter of the SiNWs is reduced by thermal oxidation, where self-limiting oxidation is encountered after oxidizing the SiNWs at 950 °C for 1 h. A second oxidation is performed to achieve vertically aligned, sub-20 nm SiNW arrays. Si/SiO2 core/shell NWs are obtained before removing the oxidized shell. HRTEM imaging shows that the SiNWs have excellent crystallinity.
硅纳米线(SiNWs)是包括光伏、光子学和传感器在内的各种应用中具有吸引力的构建单元。通过传统的自上而下方法制造直径小于100 nm的SiNW阵列仍然具有挑战性。在这项工作中,化学蚀刻和热氧化相结合,以制造垂直排列的、直径小于20 nm的SiNW阵列。首先通过纳米球(NS)光刻和化学蚀刻制造出直径在95至200 nm之间的无缺陷SiNWs。无缺陷SiNW制造的关键方面被确定为:(1)在NS尺寸减小过程中实现高蚀刻选择性;(2)保持具有光滑侧壁的圆形NS形状;(3)使用定向金属沉积技术。通过改变反应离子蚀刻功率,展示了具有相同间距但直径可变的SiNWs。SiNWs的直径通过热氧化减小,在950°C下氧化SiNWs 1小时后会遇到自限制氧化。进行第二次氧化以实现垂直排列的、直径小于20 nm的SiNW阵列。在去除氧化壳之前获得了Si/SiO2核壳纳米线。高分辨率透射电子显微镜成像表明SiNWs具有优异的结晶度。