Manrique-Vallier Daniel
Department of Statistics, Indiana University, Bloomington, Indiana 47408, U.S.A.
Biometrics. 2016 Dec;72(4):1246-1254. doi: 10.1111/biom.12502. Epub 2016 Mar 8.
We introduce a new Bayesian nonparametric method for estimating the size of a closed population from multiple-recapture data. Our method, based on Dirichlet process mixtures, can accommodate complex patterns of heterogeneity of capture, and can transparently modulate its complexity without a separate model selection step. Additionally, it can handle the massively sparse contingency tables generated by large number of recaptures with moderate sample sizes. We develop an efficient and scalable MCMC algorithm for estimation. We apply our method to simulated data, and to two examples from the literature of estimation of casualties in armed conflicts.
我们介绍了一种新的贝叶斯非参数方法,用于根据多次重捕数据估计封闭种群的大小。我们基于狄利克雷过程混合的方法能够适应复杂的捕获异质性模式,并且无需单独的模型选择步骤就能透明地调整其复杂性。此外,它可以处理由大量重捕和适度样本量生成的极度稀疏的列联表。我们开发了一种高效且可扩展的MCMC估计算法。我们将我们的方法应用于模拟数据以及武装冲突中伤亡估计文献中的两个实例。