Suppr超能文献

基于模型的实时横截面光声断层扫描反演。

Real-Time Model-Based Inversion in Cross-Sectional Optoacoustic Tomography.

出版信息

IEEE Trans Med Imaging. 2016 Aug;35(8):1883-91. doi: 10.1109/TMI.2016.2536779. Epub 2016 Mar 2.

Abstract

Analytical (closed-form) inversion schemes have been the standard approach for image reconstruction in optoacoustic tomography due to their fast reconstruction abilities and low memory requirements. Yet, the need for quantitative imaging and artifact reduction has led to the development of more accurate inversion approaches, which rely on accurate forward modeling of the optoacoustic wave generation and propagation. In this way, multiple experimental factors can be incorporated, such as the exact detection geometry, spatio-temporal response of the transducers, and acoustic heterogeneities. The model-based inversion commonly results in very large sparse matrix formulations that require computationally extensive and memory demanding regularization schemes for image reconstruction, hindering their effective implementation in real-time imaging applications. Herein, we introduce a new discretization procedure for efficient model-based reconstructions in two-dimensional optoacoustic tomography that allows for parallel implementation on a graphics processing unit (GPU) with a relatively low numerical complexity. By on-the-fly calculation of the model matrix in each iteration of the inversion procedure, the new approach results in imaging frame rates exceeding 10 Hz, thus enabling real-time image rendering using the model-based approach.

摘要

由于其快速重建能力和低内存需求,解析(闭式)反演方案一直是光声断层成像中图像重建的标准方法。然而,定量成像和减少伪影的需求促使开发了更准确的反演方法,这些方法依赖于对光声波产生和传播的精确正向建模。通过这种方式,可以合并多个实验因素,例如精确的检测几何形状、换能器的时空响应和声学非均质性。基于模型的反演通常会导致非常大的稀疏矩阵公式,这些公式需要计算密集且内存密集的正则化方案来进行图像重建,从而阻碍了它们在实时成像应用中的有效实现。在这里,我们引入了一种新的二维光声断层成像中高效基于模型的重建离散化方法,该方法允许在图形处理单元 (GPU) 上进行并行实现,具有相对较低的数值复杂度。通过在反演过程的每次迭代中实时计算模型矩阵,该新方法可实现超过 10 Hz 的成像帧率,从而使用基于模型的方法实现实时图像渲染。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验