Suppr超能文献

基于模型的大三维光声数据集重建。

Model-Based Reconstruction of Large Three-Dimensional Optoacoustic Datasets.

出版信息

IEEE Trans Med Imaging. 2020 Sep;39(9):2931-2940. doi: 10.1109/TMI.2020.2981835. Epub 2020 Mar 18.

Abstract

Iterative model-based algorithms are known to enable more accurate and quantitative optoacoustic (photoacoustic) tomographic reconstructions than standard back-projection methods. However, three-dimensional (3D) model-based inversion is often hampered by high computational complexity and memory overhead. Parallel implementations on a graphics processing unit (GPU) have been shown to efficiently reduce the memory requirements by on-the-fly calculation of the actions of the optoacoustic model matrix, but the high complexity still makes these approaches impractical for large 3D optoacoustic datasets. Herein, we show that the computational complexity of 3D model-based iterative inversion can be significantly reduced by splitting the model matrix into two parts: one maximally sparse matrix containing only one entry per voxel-transducer pair and a second matrix corresponding to cyclic convolution. We further suggest reconstructing the images by multiplying the transpose of the model matrix calculated in this manner with the acquired signals, which is equivalent to using a very large regularization parameter in the iterative inversion method. The performance of these two approaches is compared to that of standard back-projection and a recently introduced GPU-based model-based method using datasets from in vivo experiments. The reconstruction time was accelerated by approximately an order of magnitude with the new iterative method, while multiplication with the transpose of the matrix is shown to be as fast as standard back-projection.

摘要

迭代模型算法被公认为比标准反向投影方法更能实现精确和定量的光声(超声)层析成像重建。然而,三维(3D)基于模型的反演通常受到高计算复杂性和内存开销的阻碍。在图形处理单元(GPU)上的并行实现已被证明可以通过实时计算光声模型矩阵的作用来有效地降低内存需求,但高复杂性仍然使得这些方法对于大型 3D 光声数据集不切实际。在此,我们表明通过将模型矩阵分成两部分,可以显著降低 3D 基于模型的迭代反演的计算复杂性:一个包含每个体素-换能器对只有一个元素的最大稀疏矩阵和一个对应于循环卷积的第二矩阵。我们进一步建议通过用以这种方式计算的模型矩阵的转置乘以所获取的信号来重建图像,这相当于在迭代反演方法中使用非常大的正则化参数。使用来自体内实验的数据集,将这两种方法的性能与标准反向投影和最近提出的基于 GPU 的基于模型的方法进行了比较。新的迭代方法将重建时间加速了约一个数量级,而矩阵转置的乘法与标准反向投影一样快。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验