Suppr超能文献

组织学组织切片中小鼠前列腺上皮内瘤变的基于特征的分析。

Feature-based analysis of mouse prostatic intraepithelial neoplasia in histological tissue sections.

作者信息

Ruusuvuori Pekka, Valkonen Mira, Nykter Matti, Visakorpi Tapio, Latonen Leena

机构信息

Institute of Biosciences and Medical Technology - BioMediTech, University of Tampere, Tampere, Finland; Tampere University of Technology, Pori, Finland.

Institute of Biosciences and Medical Technology - BioMediTech, University of Tampere, Tampere, Finland.

出版信息

J Pathol Inform. 2016 Jan 29;7:5. doi: 10.4103/2153-3539.175378. eCollection 2016.

Abstract

This paper describes work presented at the Nordic Symposium on Digital Pathology 2015, in Linköping, Sweden. Prostatic intraepithelial neoplasia (PIN) represents premalignant tissue involving epithelial growth confined in the lumen of prostatic acini. In the attempts to understand oncogenesis in the human prostate, early neoplastic changes can be modeled in the mouse with genetic manipulation of certain tumor suppressor genes or oncogenes. As with many early pathological changes, the PIN lesions in the mouse prostate are macroscopically small, but microscopically spanning areas often larger than single high magnification focus fields in microscopy. This poses a challenge to utilize full potential of the data acquired in histological specimens. We use whole prostates fixed in molecular fixative PAXgene™, embedded in paraffin, sectioned through and stained with H&E. To visualize and analyze the microscopic information spanning whole mouse PIN (mPIN) lesions, we utilize automated whole slide scanning and stacked sections through the tissue. The region of interests is masked, and the masked areas are processed using a cascade of automated image analysis steps. The images are normalized in color space, after which exclusion of secretion areas and feature extraction is performed. Machine learning is utilized to build a model of early PIN lesions for determining the probability for histological changes based on the calculated features. We performed a feature-based analysis to mPIN lesions. First, a quantitative representation of over 100 features was built, including several features representing pathological changes in PIN, especially describing the spatial growth pattern of lesions in the prostate tissue. Furthermore, we built a classification model, which is able to align PIN lesions corresponding to grading by visual inspection to more advanced and mild lesions. The classifier allowed both determining the probability of early histological changes for uncategorized tissue samples and interpretation of the model parameters. Here, we develop quantitative image analysis pipeline to describe morphological changes in histological images. Even subtle changes in mPIN lesion characteristics can be described with feature analysis and machine learning. Constructing and using multidimensional feature data to represent histological changes enables richer analysis and interpretation of early pathological lesions.

摘要

本文介绍了在瑞典林雪平举行的2015年北欧数字病理学研讨会上展示的工作。前列腺上皮内瘤变(PIN)代表癌前组织,其上皮生长局限于前列腺腺泡腔内。在试图理解人类前列腺癌发生过程中,早期肿瘤性变化可通过对某些肿瘤抑制基因或癌基因进行基因操作在小鼠中建模。与许多早期病理变化一样,小鼠前列腺中的PIN病变在宏观上较小,但在显微镜下其跨越的区域通常大于显微镜下单个高倍聚焦视野。这对充分利用组织学标本中获取的数据的潜力构成了挑战。我们使用固定在分子固定剂PAXgene™中的整个前列腺,将其包埋在石蜡中,切片并进行苏木精和伊红(H&E)染色。为了可视化和分析跨越整个小鼠PIN(mPIN)病变的微观信息,我们利用自动全玻片扫描和贯穿组织的堆叠切片。感兴趣区域被标记,然后使用一系列自动图像分析步骤对标记区域进行处理。图像在颜色空间中进行归一化,之后排除分泌区域并进行特征提取。利用机器学习建立早期PIN病变模型,以便根据计算出的特征确定组织学变化的概率。我们对mPIN病变进行了基于特征的分析。首先,构建了100多个特征的定量表示,包括几个代表PIN病理变化的特征,特别是描述前列腺组织中病变空间生长模式的特征。此外,我们建立了一个分类模型,该模型能够将通过视觉检查分级的PIN病变与更高级别和轻度病变进行匹配。该分类器既能确定未分类组织样本早期组织学变化的概率,又能解释模型参数。在这里,我们开发了定量图像分析流程来描述组织学图像中的形态变化。即使是mPIN病变特征的细微变化也可以通过特征分析和机器学习来描述。构建和使用多维特征数据来表示组织学变化能够对早期病理病变进行更丰富的分析和解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b274/4763506/91c420290805/JPI-7-5-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验