Pham Hung Tan, Lim Kie Zen, Havenith Remco W A, Nguyen Minh Tho
Computational Chemistry Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
Theoretical Chemistry, Zernike Institute for Advanced Materials and Stratingh Institute for Chemistry, University of Groningen, NL-9747 AG Groningen, The Netherlands.
Phys Chem Chem Phys. 2016 Apr 28;18(17):11919-31. doi: 10.1039/c5cp07391j.
The planarity of small boron-based clusters is the result of an interplay between geometry, electron delocalization, covalent bonding and stability. These compounds contain two different bonding patterns involving both σ and π delocalized bonds, and up to now, their aromaticity has been assigned mainly using the classical (4N + 2) electron count for both types of electrons. In the present study, we reexplored the aromatic feature of different types of planar boron-based clusters making use of the ring current approach. B3(+/-), B4(2-), B5(+/-), B6, B7(-), B8(2-), B9(-), B10(2-), B11(-), B12, B13(+), B14(2-) and B16(2-) are characterized by magnetic responses to be doubly σ and π aromatic species in which the π aromaticity can be predicted using the (4N + 2) electron count. The triply aromatic character of B12 and B13(+) is confirmed. The π electrons of B18(2-), B19(-) and B20(2-) obey the disk aromaticity rule with an electronic configuration of [1σ(2)1π(4)1δ(4)2σ(2)] rather than the (4N + 2) count. The double aromaticity feature is observed for boron hydride cycles including B@B5H5(+), Li7B5H5 and M@BnHn(q) clusters from both the (4N + 2) rule and ring current maps. The double π and σ aromaticity in carbon-boron planar cycles B7C(-), B8C, B6C2, B9C(-), B8C2 and B7C3(-) is in conflict with the Hückel electron count. This is also the case for the ions B11C5(+/-) whose ring current indicators suggest that they belong to the class of double aromaticity, in which the π electrons obey the disk aromaticity characteristics. In many clusters, the classical electron count cannot be applied, and the magnetic responses of the electron density expressed in terms of the ring current provide us with a more consistent criterion for determining their aromatic character.
小型硼基簇的平面性是几何结构、电子离域、共价键和稳定性之间相互作用的结果。这些化合物包含两种不同的键合模式,涉及σ键和π离域键,到目前为止,它们的芳香性主要是通过对两种类型电子都使用经典的(4N + 2)电子计数来确定的。在本研究中,我们利用环电流方法重新探索了不同类型平面硼基簇的芳香特性。B3(+/-)、B4(2-)、B5(+/-)、B6、B7(-)、B8(2-)、B9(-)、B10(2-)、B11(-)、B12、B13(+)、B14(2-)和B16(2-)的特征是具有磁响应,为双σ和π芳香族物种,其中π芳香性可以使用(4N + 2)电子计数来预测。B12和B13(+)的三重芳香性特征得到了证实。B18(2-)、B19(-)和B20(2-)的π电子遵循盘状芳香性规则,电子构型为[1σ(2)1π(4)1δ(4)2σ(2)],而不是(4N + 2)计数。从(4N + 2)规则和环电流图中都观察到硼氢化物环(包括B@B5H5(+)、Li7B5H5和M@BnHn(q)簇)具有双芳香性特征。碳硼平面环B7C(-)、B8C、B6C2、B9C(-)、B8C2和B7C3(-)中的双π和σ芳香性与休克尔电子计数相矛盾。离子B11C5(+/-)也是如此,其环电流指标表明它们属于双芳香性类别,其中π电子遵循盘状芳香性特征。在许多簇中,经典电子计数无法应用,而以环电流表示的电子密度的磁响应为我们确定它们的芳香特性提供了更一致的标准。