Suppr超能文献

高血压中非血管运动器官的神经控制

Neural Control of Non-vasomotor Organs in Hypertension.

作者信息

Hurr Chansol, Young Colin N

机构信息

Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, 2300 Eye Street NW, 448 Ross Hall, Washington, D.C., 20037, USA.

出版信息

Curr Hypertens Rep. 2016 Apr;18(4):30. doi: 10.1007/s11906-016-0635-8.

Abstract

Hypertension affects over 25 % of the population with the incidence continuing to rise, due in part to the growing obesity epidemic. Chronic elevations in sympathetic nerve activity (SNA) are a hallmark of the disease and contribute to elevations in blood pressure through influences on the vasculature, kidney, and heart (i.e., neurogenic hypertension). In this regard, a number of central nervous system mechanisms and neural pathways have emerged as crucial in chronically elevating SNA. However, it is important to consider that "sympathetic signatures" are present, with differential increases in SNA to regional organs that are dependent upon the disease progression. Here, we discuss recent findings on the central nervous system mechanisms and autonomic regulatory networks involved in neurogenic hypertension, in both non-obesity- and obesity-associated hypertension, with an emphasis on angiotensin-II, salt, oxidative and endoplasmic reticulum stress, inflammation, and the adipokine leptin.

摘要

高血压影响着超过25%的人口,且发病率持续上升,部分原因是肥胖流行日益严重。交感神经活动(SNA)的慢性升高是该疾病的一个标志,并通过对血管系统、肾脏和心脏的影响导致血压升高(即神经源性高血压)。在这方面,一些中枢神经系统机制和神经通路已成为慢性升高SNA的关键因素。然而,需要考虑的是存在“交感神经特征”,即SNA对不同区域器官的增加存在差异,这取决于疾病进展情况。在此,我们讨论近期关于神经源性高血压(包括非肥胖相关和肥胖相关高血压)中涉及的中枢神经系统机制和自主调节网络的研究发现,重点关注血管紧张素II、盐、氧化和内质网应激、炎症以及脂肪因子瘦素。

相似文献

1
Neural Control of Non-vasomotor Organs in Hypertension.
Curr Hypertens Rep. 2016 Apr;18(4):30. doi: 10.1007/s11906-016-0635-8.
2
Does enhanced respiratory-sympathetic coupling contribute to peripheral neural mechanisms of angiotensin II-salt hypertension?
Exp Physiol. 2010 May;95(5):587-94. doi: 10.1113/expphysiol.2009.047399. Epub 2010 Mar 12.
4
Role of leptin and central nervous system melanocortins in obesity hypertension.
Curr Opin Nephrol Hypertens. 2013 Mar;22(2):135-40. doi: 10.1097/MNH.0b013e32835d0c05.
5
Obesity-Induced Hypertension: Brain Signaling Pathways.
Curr Hypertens Rep. 2016 Jul;18(7):58. doi: 10.1007/s11906-016-0658-1.
6
Renal sympathetic nerve activity in the development of hypertension.
Curr Hypertens Rep. 2006 Jun;8(3):242-8. doi: 10.1007/s11906-006-0057-0.
7
[Neurogenic factors and hypertension].
Medicina (B Aires). 1974 Sep-Oct;34(5):547-55.
8
Central nervous system dysfunction in obesity-induced hypertension.
Curr Hypertens Rep. 2014 Sep;16(9):466. doi: 10.1007/s11906-014-0466-4.
9
Oxidative stress and hypertension.
Med Clin North Am. 2009 May;93(3):621-35. doi: 10.1016/j.mcna.2009.02.015.
10
The Role of CNS in the Effects of Salt on Blood Pressure.
Curr Hypertens Rep. 2016 Feb;18(2):10. doi: 10.1007/s11906-015-0620-7.

引用本文的文献

1
Maternal High-Fat Diet and Offspring Hypertension.
Int J Mol Sci. 2022 Jul 25;23(15):8179. doi: 10.3390/ijms23158179.
2
Oxidative Stress-Induced Hypertension of Developmental Origins: Preventive Aspects of Antioxidant Therapy.
Antioxidants (Basel). 2022 Mar 7;11(3):511. doi: 10.3390/antiox11030511.
3
Liver sympathetic denervation reverses obesity-induced hepatic steatosis.
J Physiol. 2019 Sep;597(17):4565-4580. doi: 10.1113/JP277994. Epub 2019 Jul 26.
4
Prenatal cold exposure causes hypertension in offspring by hyperactivity of the sympathetic nervous system.
Clin Sci (Lond). 2019 May 9;133(9):1097-1113. doi: 10.1042/CS20190254. Print 2019 May 31.
5
Remodeled structure and reduced contractile responsiveness of ocular ciliary artery in spontaneously hypertensive rats.
Int J Ophthalmol. 2019 Mar 18;12(3):363-368. doi: 10.18240/ijo.2019.03.02. eCollection 2019.
6
Genetic polymorphisms associated with reactive oxygen species and blood pressure regulation.
Pharmacogenomics J. 2019 Aug;19(4):315-336. doi: 10.1038/s41397-019-0082-4. Epub 2019 Feb 6.
7
Neurogenic hypertension: pathophysiology, diagnosis and management.
Clin Auton Res. 2018 Aug;28(4):363-374. doi: 10.1007/s10286-018-0541-z. Epub 2018 Jul 4.
8
Brain Regional Blood Flow and Working Memory Performance Predict Change in Blood Pressure Over 2 Years.
Hypertension. 2017 Dec;70(6):1132-1141. doi: 10.1161/HYPERTENSIONAHA.117.09978. Epub 2017 Oct 16.

本文引用的文献

1
Sympathetic-mediated activation versus suppression of the immune system: consequences for hypertension.
J Physiol. 2016 Feb 1;594(3):527-36. doi: 10.1113/JP271516. Epub 2015 Dec 30.
2
Central Renin-Angiotensin System Activation and Inflammation Induced by High-Fat Diet Sensitize Angiotensin II-Elicited Hypertension.
Hypertension. 2016 Jan;67(1):163-70. doi: 10.1161/HYPERTENSIONAHA.115.06263. Epub 2015 Nov 16.
3
Cerebrospinal Fluid Hypernatremia Elevates Sympathetic Nerve Activity and Blood Pressure via the Rostral Ventrolateral Medulla.
Hypertension. 2015 Dec;66(6):1184-90. doi: 10.1161/HYPERTENSIONAHA.115.05936. Epub 2015 Sep 28.
4
Angiotensin-II, the Brain, and Hypertension: An Update.
Hypertension. 2015 Nov;66(5):920-6. doi: 10.1161/HYPERTENSIONAHA.115.03624. Epub 2015 Aug 31.
5
Aerobic training normalizes autonomic dysfunction, HMGB1 content, microglia activation and inflammation in hypothalamic paraventricular nucleus of SHR.
Am J Physiol Heart Circ Physiol. 2015 Oct;309(7):H1115-22. doi: 10.1152/ajpheart.00349.2015. Epub 2015 Aug 7.
7
Involvement of bone marrow cells and neuroinflammation in hypertension.
Circ Res. 2015 Jul 3;117(2):178-91. doi: 10.1161/CIRCRESAHA.117.305853. Epub 2015 May 11.
10
Proinflammatory cytokines upregulate sympathoexcitatory mechanisms in the subfornical organ of the rat.
Hypertension. 2015 May;65(5):1126-33. doi: 10.1161/HYPERTENSIONAHA.114.05112. Epub 2015 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验