Koopman Bevan, Zuccon Guido, Wagholikar Amol, Chu Kevin, O'Dwyer John, Nguyen Anthony, Keijzers Gerben
Australian e-Health Research Centre, CSIRO, Brisbane, QLD, Australia; Queensland University of Technology, Brisbane, QLD, Australia.
Queensland University of Technology, Brisbane, QLD, Australia.
AMIA Annu Symp Proc. 2015 Nov 5;2015:775-84. eCollection 2015.
We study machine learning techniques to automatically identify limb abnormalities (including fractures, dislocations and foreign bodies) from radiology reports. For patients presenting to the Emergency Room (ER) with suspected limb abnormalities (e.g., fractures) there is often a multi-day delay before the radiology report is available to ER staff, by which time the patient may have been discharged home with the possibility of undiagnosed fractures. ER staff, currently, have to manually review and reconcile radiology reports with the ER discharge diagnosis; this is a laborious and error-prone manual process. Using radiology reports from three different hospitals, we show that extracting detailed features from the reports to train Support Vector Machines can effectively automate the identification of limb fractures, dislocations and foreign bodies. These can be automatically reconciled with a patient's discharge diagnosis from the ER to identify a number of cases where limb abnormalities went undiagnosed.
我们研究机器学习技术,以从放射学报告中自动识别肢体异常(包括骨折、脱位和异物)。对于因疑似肢体异常(如骨折)前往急诊室(ER)就诊的患者,放射学报告通常要多日之后才能供急诊室工作人员使用,而此时患者可能已出院回家,骨折有可能未被诊断出来。目前,急诊室工作人员必须手动审查放射学报告,并将其与急诊室出院诊断进行核对;这是一个费力且容易出错的手动过程。我们使用来自三家不同医院的放射学报告表明,从报告中提取详细特征以训练支持向量机,可以有效地自动识别肢体骨折、脱位和异物。这些可以与患者在急诊室的出院诊断自动核对,以识别一些肢体异常未被诊断出来的病例。