Suppr超能文献

放射学报告与出院小结的自动核对

Automated Reconciliation of Radiology Reports and Discharge Summaries.

作者信息

Koopman Bevan, Zuccon Guido, Wagholikar Amol, Chu Kevin, O'Dwyer John, Nguyen Anthony, Keijzers Gerben

机构信息

Australian e-Health Research Centre, CSIRO, Brisbane, QLD, Australia; Queensland University of Technology, Brisbane, QLD, Australia.

Queensland University of Technology, Brisbane, QLD, Australia.

出版信息

AMIA Annu Symp Proc. 2015 Nov 5;2015:775-84. eCollection 2015.

Abstract

We study machine learning techniques to automatically identify limb abnormalities (including fractures, dislocations and foreign bodies) from radiology reports. For patients presenting to the Emergency Room (ER) with suspected limb abnormalities (e.g., fractures) there is often a multi-day delay before the radiology report is available to ER staff, by which time the patient may have been discharged home with the possibility of undiagnosed fractures. ER staff, currently, have to manually review and reconcile radiology reports with the ER discharge diagnosis; this is a laborious and error-prone manual process. Using radiology reports from three different hospitals, we show that extracting detailed features from the reports to train Support Vector Machines can effectively automate the identification of limb fractures, dislocations and foreign bodies. These can be automatically reconciled with a patient's discharge diagnosis from the ER to identify a number of cases where limb abnormalities went undiagnosed.

摘要

我们研究机器学习技术,以从放射学报告中自动识别肢体异常(包括骨折、脱位和异物)。对于因疑似肢体异常(如骨折)前往急诊室(ER)就诊的患者,放射学报告通常要多日之后才能供急诊室工作人员使用,而此时患者可能已出院回家,骨折有可能未被诊断出来。目前,急诊室工作人员必须手动审查放射学报告,并将其与急诊室出院诊断进行核对;这是一个费力且容易出错的手动过程。我们使用来自三家不同医院的放射学报告表明,从报告中提取详细特征以训练支持向量机,可以有效地自动识别肢体骨折、脱位和异物。这些可以与患者在急诊室的出院诊断自动核对,以识别一些肢体异常未被诊断出来的病例。

相似文献

1
Automated Reconciliation of Radiology Reports and Discharge Summaries.
AMIA Annu Symp Proc. 2015 Nov 5;2015:775-84. eCollection 2015.
5
Natural Language-based Machine Learning Models for the Annotation of Clinical Radiology Reports.
Radiology. 2018 May;287(2):570-580. doi: 10.1148/radiol.2018171093. Epub 2018 Jan 30.
8
Unsupervised Topic Modeling in a Large Free Text Radiology Report Repository.
J Digit Imaging. 2016 Feb;29(1):59-62. doi: 10.1007/s10278-015-9823-3.
10
Automated Outcome Classification of Computed Tomography Imaging Reports for Pediatric Traumatic Brain Injury.
Acad Emerg Med. 2016 Feb;23(2):171-8. doi: 10.1111/acem.12859. Epub 2016 Jan 14.

引用本文的文献

1
Using natural language processing in emergency medicine health service research: A systematic review and meta-analysis.
Acad Emerg Med. 2024 Jul;31(7):696-706. doi: 10.1111/acem.14937. Epub 2024 May 16.
3
The Application of Projection Word Embeddings on Medical Records Scoring System.
Healthcare (Basel). 2021 Sep 29;9(10):1298. doi: 10.3390/healthcare9101298.
4
Prediction of severe chest injury using natural language processing from the electronic health record.
Injury. 2021 Feb;52(2):205-212. doi: 10.1016/j.injury.2020.10.094. Epub 2020 Oct 25.
6
Clinical Document Classification Using Labeled and Unlabeled Data Across Hospitals.
AMIA Annu Symp Proc. 2018 Dec 5;2018:545-554. eCollection 2018.

本文引用的文献

4
Most frequently missed fractures in the emergency department.
Clin Pediatr (Phila). 2011 Mar;50(3):183-6. doi: 10.1177/0009922810384725. Epub 2010 Dec 2.
5
Identifying wrist fracture patients with high accuracy by automatic categorization of X-ray reports.
J Am Med Inform Assoc. 2006 Nov-Dec;13(6):696-8. doi: 10.1197/jamia.M1995. Epub 2006 Aug 23.
6
Automated computer-assisted categorization of radiology reports.
AJR Am J Roentgenol. 2005 Feb;184(2):687-90. doi: 10.2214/ajr.184.2.01840687.
7
Same-day X-ray reporting is not needed in well-supervised emergency departments.
Emerg Med (Fremantle). 2001 Jun;13(2):194-7. doi: 10.1046/j.1442-2026.2001.00211.x.
8
9
X-ray reporting in accident and emergency departments--reducing errors.
Eur J Emerg Med. 1997 Dec;4(4):213-6. doi: 10.1097/00063110-199712000-00007.
10
X-ray reporting in accident and emergency departments--an area for improvements in efficiency.
Arch Emerg Med. 1991 Dec;8(4):266-70. doi: 10.1136/emj.8.4.266.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验