Suppr超能文献

利用未标记的临床数据提高疑似急性冠状动脉综合征风险分层模型的性能。

Leveraging Unlabeled Clinical Data to Boost Performance of Risk Stratification Models for Suspected Acute Coronary Syndrome.

机构信息

The Australian e-Health Research Centre, CSIRO, Brisbane, Queensland, Australia.

Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.

出版信息

AMIA Annu Symp Proc. 2024 Jan 11;2023:744-753. eCollection 2023.

Abstract

The performance of deep learning models in the health domain is desperately limited by the scarcity of labeled data, especially for specific clinical-domain tasks. Conversely, there are vastly available clinical unlabeled data waiting to be exploited to improve deep learning models where their training labeled data are limited. This paper investigates the use of task-specific unlabeled data to boost the performance of classification models for the risk stratification of suspected acute coronary syndrome. By leveraging large numbers of unlabeled clinical notes in task-adaptive language model pretraining, valuable prior task-specific knowledge can be attained. Based on such pretrained models, task-specific fine-tuning with limited labeled data produces better performances. Extensive experiments demonstrate that the pretrained task-specific language models using task-specific unlabeled data can significantly improve the performance of the downstream models for specific classification tasks.

摘要

深度学习模型在健康领域的表现受到标记数据稀缺的严重限制,特别是对于特定的临床领域任务。相反,有大量可用的临床未标记数据等待被利用来改进深度学习模型,这些模型的训练标记数据有限。本文研究了使用特定于任务的未标记数据来提高分类模型对疑似急性冠状动脉综合征风险分层的性能。通过在任务自适应语言模型预训练中利用大量未标记的临床记录,可以获得有价值的特定于任务的先验知识。基于这些预训练模型,使用有限的标记数据进行特定任务的微调可以产生更好的性能。广泛的实验表明,使用特定于任务的未标记数据的预训练特定于任务的语言模型可以显著提高下游特定分类任务模型的性能。

相似文献

2
When BERT meets Bilbo: a learning curve analysis of pretrained language model on disease classification.
BMC Med Inform Decis Mak. 2022 Apr 5;21(Suppl 9):377. doi: 10.1186/s12911-022-01829-2.
3
Leveraging Symbolic Knowledge Bases for Commonsense Natural Language Inference Using Pattern Theory.
IEEE Trans Pattern Anal Mach Intell. 2023 Nov;45(11):13185-13202. doi: 10.1109/TPAMI.2023.3287837. Epub 2023 Oct 3.
4
Clinically relevant pretraining is all you need.
J Am Med Inform Assoc. 2021 Aug 13;28(9):1970-1976. doi: 10.1093/jamia/ocab086.
5
Clinical Document Classification Using Labeled and Unlabeled Data Across Hospitals.
AMIA Annu Symp Proc. 2018 Dec 5;2018:545-554. eCollection 2018.
6
Extracting comprehensive clinical information for breast cancer using deep learning methods.
Int J Med Inform. 2019 Dec;132:103985. doi: 10.1016/j.ijmedinf.2019.103985. Epub 2019 Oct 2.
7
Clinical Prompt Learning With Frozen Language Models.
IEEE Trans Neural Netw Learn Syst. 2024 Nov;35(11):16453-16463. doi: 10.1109/TNNLS.2023.3294633. Epub 2024 Oct 29.
8
Self-supervised-RCNN for medical image segmentation with limited data annotation.
Comput Med Imaging Graph. 2023 Oct;109:102297. doi: 10.1016/j.compmedimag.2023.102297. Epub 2023 Sep 9.
9
Semi-supervised clinical text classification with Laplacian SVMs: an application to cancer case management.
J Biomed Inform. 2013 Oct;46(5):869-75. doi: 10.1016/j.jbi.2013.06.014. Epub 2013 Jul 8.
10

本文引用的文献

2
Hierarchical label-wise attention transformer model for explainable ICD coding.
J Biomed Inform. 2022 Sep;133:104161. doi: 10.1016/j.jbi.2022.104161. Epub 2022 Aug 20.
3
Comparison of state-of-the-art machine and deep learning algorithms to classify proximal humeral fractures using radiology text.
Eur J Radiol. 2022 Aug;153:110366. doi: 10.1016/j.ejrad.2022.110366. Epub 2022 May 20.
4
Investigation of improving the pre-training and fine-tuning of BERT model for biomedical relation extraction.
BMC Bioinformatics. 2022 Apr 4;23(1):120. doi: 10.1186/s12859-022-04642-w.
5
Clinical Text Data in Machine Learning: Systematic Review.
JMIR Med Inform. 2020 Mar 31;8(3):e17984. doi: 10.2196/17984.
6
Deep learning in clinical natural language processing: a methodical review.
J Am Med Inform Assoc. 2020 Mar 1;27(3):457-470. doi: 10.1093/jamia/ocz200.
7
BioBERT: a pre-trained biomedical language representation model for biomedical text mining.
Bioinformatics. 2020 Feb 15;36(4):1234-1240. doi: 10.1093/bioinformatics/btz682.
9
Clinical Document Classification Using Labeled and Unlabeled Data Across Hospitals.
AMIA Annu Symp Proc. 2018 Dec 5;2018:545-554. eCollection 2018.
10
How user intelligence is improving PubMed.
Nat Biotechnol. 2018 Oct 1. doi: 10.1038/nbt.4267.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验