The Australian e-Health Research Centre, CSIRO, Brisbane, Queensland, Australia.
Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
AMIA Annu Symp Proc. 2024 Jan 11;2023:744-753. eCollection 2023.
The performance of deep learning models in the health domain is desperately limited by the scarcity of labeled data, especially for specific clinical-domain tasks. Conversely, there are vastly available clinical unlabeled data waiting to be exploited to improve deep learning models where their training labeled data are limited. This paper investigates the use of task-specific unlabeled data to boost the performance of classification models for the risk stratification of suspected acute coronary syndrome. By leveraging large numbers of unlabeled clinical notes in task-adaptive language model pretraining, valuable prior task-specific knowledge can be attained. Based on such pretrained models, task-specific fine-tuning with limited labeled data produces better performances. Extensive experiments demonstrate that the pretrained task-specific language models using task-specific unlabeled data can significantly improve the performance of the downstream models for specific classification tasks.
深度学习模型在健康领域的表现受到标记数据稀缺的严重限制,特别是对于特定的临床领域任务。相反,有大量可用的临床未标记数据等待被利用来改进深度学习模型,这些模型的训练标记数据有限。本文研究了使用特定于任务的未标记数据来提高分类模型对疑似急性冠状动脉综合征风险分层的性能。通过在任务自适应语言模型预训练中利用大量未标记的临床记录,可以获得有价值的特定于任务的先验知识。基于这些预训练模型,使用有限的标记数据进行特定任务的微调可以产生更好的性能。广泛的实验表明,使用特定于任务的未标记数据的预训练特定于任务的语言模型可以显著提高下游特定分类任务模型的性能。