Suppr超能文献

迈向临床笔记中时间推理的通用时间表达模型。

Towards a Generalizable Time Expression Model for Temporal Reasoning in Clinical Notes.

作者信息

Velupillai Sumithra, Mowery Danielle L, Abdelrahman Samir, Christensen Lee, Chapman Wendy W

机构信息

Department of Computer and Systems Sciences (DSV), Stockholm University, Stockholm, Sweden; Department of Biomedical Informatics, University of Utah, Salt Lake City, UT.

Department of Biomedical Informatics, University of Utah, Salt Lake City, UT.

出版信息

AMIA Annu Symp Proc. 2015 Nov 5;2015:1252-9. eCollection 2015.

Abstract

Accurate temporal identification and normalization is imperative for many biomedical and clinical tasks such as generating timelines and identifying phenotypes. A major natural language processing challenge is developing and evaluating a generalizable temporal modeling approach that performs well across corpora and institutions. Our long-term goal is to create such a model. We initiate our work on reaching this goal by focusing on temporal expression (TIMEX3) identification. We present a systematic approach to 1) generalize existing solutions for automated TIMEX3 span detection, and 2) assess similarities and differences by various instantiations of TIMEX3 models applied on separate clinical corpora. When evaluated on the 2012 i2b2 and the 2015 Clinical TempEval challenge corpora, our conclusion is that our approach is successful - we achieve competitive results for automated classification, and we identify similarities and differences in TIMEX3 modeling that will be informative in the development of a simplified, general temporal model.

摘要

对于许多生物医学和临床任务(如生成时间线和识别表型)而言,准确的时间识别和归一化至关重要。一个主要的自然语言处理挑战是开发和评估一种可泛化的时间建模方法,该方法在不同语料库和机构中都能表现良好。我们的长期目标是创建这样一个模型。我们通过专注于时间表达式(TIMEX3)识别来启动实现这一目标的工作。我们提出了一种系统方法,用于:1)推广用于自动检测TIMEX3跨度的现有解决方案;2)通过应用于不同临床语料库的TIMEX3模型的各种实例来评估异同。在2012年i2b2和2015年临床时间评估挑战语料库上进行评估时,我们的结论是我们的方法是成功的——我们在自动分类方面取得了有竞争力的结果,并且我们识别出了TIMEX3建模中的异同,这将为简化的通用时间模型的开发提供参考。

相似文献

1
Towards a Generalizable Time Expression Model for Temporal Reasoning in Clinical Notes.
AMIA Annu Symp Proc. 2015 Nov 5;2015:1252-9. eCollection 2015.
2
Comprehensive temporal information detection from clinical text: medical events, time, and TLINK identification.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):836-42. doi: 10.1136/amiajnl-2013-001622. Epub 2013 Apr 4.
3
Multilayered temporal modeling for the clinical domain.
J Am Med Inform Assoc. 2016 Mar;23(2):387-95. doi: 10.1093/jamia/ocv113. Epub 2015 Oct 31.
4
MedTime: a temporal information extraction system for clinical narratives.
J Biomed Inform. 2013 Dec;46 Suppl:S20-S28. doi: 10.1016/j.jbi.2013.07.012. Epub 2013 Jul 31.
5
Normalization of relative and incomplete temporal expressions in clinical narratives.
J Am Med Inform Assoc. 2015 Sep;22(5):1001-8. doi: 10.1093/jamia/ocu004. Epub 2015 Apr 12.
6
Evaluating temporal relations in clinical text: 2012 i2b2 Challenge.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):806-13. doi: 10.1136/amiajnl-2013-001628. Epub 2013 Apr 5.
8
Review of Temporal Reasoning in the Clinical Domain for Timeline Extraction: Where we are and where we need to be.
J Biomed Inform. 2021 Jun;118:103784. doi: 10.1016/j.jbi.2021.103784. Epub 2021 Apr 14.
9
Detecting temporal expressions in medical narratives.
Int J Med Inform. 2013 Feb;82(2):118-27. doi: 10.1016/j.ijmedinf.2012.04.006. Epub 2012 May 16.
10
Scaling-up NLP Pipelines to Process Large Corpora of Clinical Notes.
Methods Inf Med. 2015;54(6):548-52. doi: 10.3414/ME14-02-0018. Epub 2015 Nov 4.

引用本文的文献

1
Quantification of BERT Diagnosis Generalizability Across Medical Specialties Using Semantic Dataset Distance.
AMIA Jt Summits Transl Sci Proc. 2021 May 17;2021:345-354. eCollection 2021.
2
Extracting Angina Symptoms from Clinical Notes Using Pre-Trained Transformer Architectures.
AMIA Annu Symp Proc. 2021 Jan 25;2020:412-421. eCollection 2020.
4
MetaMap Lite: an evaluation of a new Java implementation of MetaMap.
J Am Med Inform Assoc. 2017 Jul 1;24(4):841-844. doi: 10.1093/jamia/ocw177.

本文引用的文献

1
ClearTK 2.0: Design Patterns for Machine Learning in UIMA.
LREC Int Conf Lang Resour Eval. 2014 May;2014:3289-3293.
2
Temporal Annotation in the Clinical Domain.
Trans Assoc Comput Linguist. 2014 Apr;2:143-154.
3
Semantic annotation of clinical events for generating a problem list.
AMIA Annu Symp Proc. 2013 Nov 16;2013:1032-41. eCollection 2013.
4
A flexible framework for recognizing events, temporal expressions, and temporal relations in clinical text.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):867-75. doi: 10.1136/amiajnl-2013-001619. Epub 2013 May 18.
5
Evaluating temporal relations in clinical text: 2012 i2b2 Challenge.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):806-13. doi: 10.1136/amiajnl-2013-001628. Epub 2013 Apr 5.
6
An end-to-end system to identify temporal relation in discharge summaries: 2012 i2b2 challenge.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):849-58. doi: 10.1136/amiajnl-2012-001607. Epub 2013 Mar 6.
7
9
A temporal constraint structure for extracting temporal information from clinical narrative.
J Biomed Inform. 2006 Aug;39(4):424-39. doi: 10.1016/j.jbi.2005.07.002. Epub 2005 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验