Department of Physics, Stockholm University , AlbaNova University Centre, 10691 Stockholm, Sweden.
Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37070 Göttingen, Germany.
Struct Dyn. 2016 Feb 9;3(4):043204. doi: 10.1063/1.4941602. eCollection 2016 Jul.
We utilized femtosecond time-resolved resonant inelastic X-ray scattering and ab initio theory to study the transient electronic structure and the photoinduced molecular dynamics of a model metal carbonyl photocatalyst Fe(CO)5 in ethanol solution. We propose mechanistic explanation for the parallel ultrafast intra-molecular spin crossover and ligation of the Fe(CO)4 which are observed following a charge transfer photoexcitation of Fe(CO)5 as reported in our previous study [Wernet et al., Nature 520, 78 (2015)]. We find that branching of the reaction pathway likely happens in the (1)A1 state of Fe(CO)4. A sub-picosecond time constant of the spin crossover from (1)B2 to (3)B2 is rationalized by the proposed (1)B2 → (1)A1 → (3)B2 mechanism. Ultrafast ligation of the (1)B2 Fe(CO)4 state is significantly faster than the spin-forbidden and diffusion limited ligation process occurring from the (3)B2 Fe(CO)4 ground state that has been observed in the previous studies. We propose that the ultrafast ligation occurs via (1)B2 → (1)A1 → (1)A' Fe(CO)4EtOH pathway and the time scale of the (1)A1 Fe(CO)4 state ligation is governed by the solute-solvent collision frequency. Our study emphasizes the importance of understanding the interaction of molecular excited states with the surrounding environment to explain the relaxation pathways of photoexcited metal carbonyls in solution.
我们利用飞秒时间分辨共振非弹性 X 射线散射和第一性原理理论研究了模型金属羰基光催化剂 Fe(CO)5 在乙醇溶液中的瞬态电子结构和光致分子动力学。我们提出了一种机制解释,用于解释我们之前的研究[Wernet 等人,自然 520,78 (2015)]中观察到的 Fe(CO)5 电荷转移光激发后发生的平行超快分子内自旋交叉和 Fe(CO)4 的键合。我们发现,反应途径的分支可能发生在 Fe(CO)4 的(1)A1 态。自旋交叉从(1)B2 到(3)B2 的亚皮秒时间常数可以通过提出的(1)B2→(1)A1→(3)B2 机制来合理化。(1)B2 Fe(CO)4 态的超快键合速度明显快于先前研究中观察到的从(3)B2 Fe(CO)4 基态发生的自旋禁阻和扩散限制的键合过程。我们提出超快键合通过(1)B2→(1)A1→(1)A'Fe(CO)4EtOH 途径发生,(1)A1 Fe(CO)4 态的键合时间尺度由溶质-溶剂碰撞频率决定。我们的研究强调了理解分子激发态与周围环境相互作用的重要性,以解释溶液中光激发金属羰基的弛豫途径。