Department of Chemistry and Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States.
Acc Chem Res. 2015 Mar 17;48(3):860-7. doi: 10.1021/ar5004016. Epub 2015 Mar 5.
Porphyrins and the related chlorins and corrins contain a cyclic tetrapyrrole with the ability to coordinate an active metal center and to perform a variety of functions exploiting the oxidation state, reactivity, and axial ligation of the metal center. These compounds are used in optically activated applications ranging from light harvesting and energy conversion to medical therapeutics and photodynamic therapy to molecular electronics, spintronics, optoelectronic thin films, and optomagnetics. Cobalt containing corrin rings extend the range of applications through photolytic cleavage of a unique axial carbon-cobalt bond, permitting spatiotemporal control of drug delivery. The photochemistry and photophysics of cyclic tetrapyrroles are controlled by electronic relaxation dynamics including internal conversion and intersystem crossing. Typically the electronic excitation cascades through ring centered ππ* states, ligand to metal charge transfer (LMCT) states, metal to ligand charge transfer (MLCT) states, and metal centered states. Ultrafast transient absorption spectroscopy provides a powerful tool for the investigation of the electronic state dynamics in metal containing tetrapyrroles. The UV-visible spectrum is sensitive to the oxidation state, electronic configuration, spin state, and axial ligation of the central metal atom. Ultrashort broadband white light probes spanning the range from 270 to 800 nm, combined with tunable excitation pulses, permit the detailed unravelling of the time scales involved in the electronic energy cascade. State-of-the-art theoretical calculations provide additional insight required for precise assignment of the states. In this Account, we focus on recent ultrafast transient absorption studies of ferric porphyrins and corrin containing cob(III)alamins elucidating the electronic states responsible for ultrafast energy cascades, excited state dynamics, and the resulting photoreactivity or photostability of these compounds. Iron tetraphenyl porphyrin chloride (Fe((III))TPPCl) exhibits picosecond decay to a metal centered d → d* (4)T state. This state decays on a ca. 16 ps time scale in room temperature solution but persists for much longer in a cryogenic glass. The photoreactivity of the (4)T state may lead to novel future applications for these compounds. In contrast, the nonplanar cob(III)alamins contain two axial ligands to the central cobalt atom. The upper axial ligand can be an alkyl group as in the two biologically active coenzymes or a nonalkyl ligand such as -CN in cyanocobalamin (vitamin B12) or -OH in hydroxocobalamin. The electronic structure, energy cascade, and bond cleavage of these compounds is sensitive to the details of the axial ligand. Nonalkylcobalamins exhibit ultrafast internal conversion to a low-lying state of metal to ligand or ligand to metal charge transfer character. The compounds are generally photostable with ground state recovery complete on a time scale of 2-7 ps in room temperature aqueous solution. Alkylcobalamins exhibit ultrafast internal conversion to an S1 state of d/π → π* character. Most compounds undergo bond cleavage from this state with near unit quantum yield within ∼100 ps. Recent theoretical calculations provide a potential energy surface accounting for these observations. Conformation dependent mixing of the corrin π and cobalt d orbitals plays a significant role in the observed photochemistry and photophysics.
卟啉和相关的叶绿素和钴胺素含有一个环状四吡咯,具有配位活性金属中心的能力,并利用金属中心的氧化态、反应性和轴向配位来发挥各种功能。这些化合物用于从光捕获和能量转换到医学治疗和光动力疗法到分子电子学、自旋电子学、光电薄膜和光磁学等各种光激活应用。含钴的钴胺环通过独特的轴向碳-钴键的光解扩展了应用范围,从而允许药物输送的时空控制。环状四吡咯的光化学和光物理受电子弛豫动力学控制,包括内部转换和系间窜跃。通常,电子激发级联通过环中心的ππ态、配体到金属电荷转移 (LMCT) 态、金属到配体电荷转移 (MLCT) 态和金属中心态进行。超快瞬态吸收光谱为研究含金属四吡咯中的电子态动力学提供了强大的工具。紫外-可见光谱对中心金属原子的氧化态、电子构型、自旋态和轴向配位敏感。跨越 270 至 800nm 范围的超短宽带白光探针,结合可调谐激发脉冲,允许详细揭示电子能量级联中涉及的时间尺度。最先进的理论计算为精确分配状态提供了所需的额外见解。在本说明中,我们重点介绍了最近对含铁卟啉和含钴(III)氨基醇的超快瞬态吸收研究,这些研究阐明了负责超快能量级联、激发态动力学以及这些化合物的光反应性或光稳定性的电子态。四苯基铁卟啉氯化物 (Fe((III))TPPCl) 表现出皮秒衰减到金属中心 d → d (4)T 态。该状态在室温溶液中以约 16 ps 的时间尺度衰减,但在低温玻璃中持续更长时间。(4)T 态的光反应性可能为这些化合物带来新的未来应用。相比之下,非平面的钴(III)氨基醇含有两个轴向配体到中心钴原子。上轴向配体可以是烷基,如两种生物活性辅酶中的配体,也可以是非烷基配体,如氰钴胺素(维生素 B12)中的 -CN 或羟钴胺素中的 -OH。这些化合物的电子结构、能量级联和键断裂对轴向配体的细节敏感。非烷基钴胺素表现出超快的内部转换到具有金属到配体或配体到金属电荷转移特征的低能级。这些化合物通常具有光稳定性,在室温水溶液中,基态恢复完全的时间尺度为 2-7 ps。烷基钴胺素表现出超快的内部转换到 d/π→π*特征的 S1 态。大多数化合物从该状态下以近单位量子产率在 ∼100 ps 内发生键断裂。最近的理论计算提供了一个能够解释这些观察结果的势能面。钴胺素的构象依赖性混合π 和钴 d 轨道在观察到的光化学和光物理中起着重要作用。