Department of Computer and Telematics Systems Engineering, University of Extremadura, Avda. de Elvas s/n, 06006, Badajoz, Spain.
Department of Electric Technology, Electronics and Automation, University of Extremadura, Avda. de Elvas s/n, 06006, Badajoz, Spain.
Chemosphere. 2016 Jun;152:107-16. doi: 10.1016/j.chemosphere.2016.02.106. Epub 2016 Mar 8.
A portable electronic nose with database connection for on-line classification of pollutants in water is presented in this paper. It is a hand-held, lightweight and powered instrument with wireless communications capable of standalone operation. A network of similar devices can be configured for distributed measurements. It uses four resistive microsensors and headspace as sampling method for extracting the volatile compounds from glass vials. The measurement and control program has been developed in LabVIEW using the database connection toolkit to send the sensors data to a server for training and classification with Artificial Neural Networks (ANNs). The use of a server instead of the microprocessor of the e-nose increases the capacity of memory and the computing power of the classifier and allows external users to perform data classification. To address this challenge, this paper also proposes a web-based framework (based on RESTFul web services, Asynchronous JavaScript and XML and JavaScript Object Notation) that allows remote users to train ANNs and request classification values regardless user's location and the type of device used. Results show that the proposed prototype can discriminate the samples measured (Blank water, acetone, toluene, ammonia, formaldehyde, hydrogen peroxide, ethanol, benzene, dichloromethane, acetic acid, xylene and dimethylacetamide) with a 94% classification success rate.
本文提出了一种带有数据库连接的便携式电子鼻,用于在线分类水中的污染物。它是一种手持式、重量轻、无线通信的仪器,可独立操作。可以配置类似的网络设备进行分布式测量。它使用四个电阻式微传感器和顶空作为采样方法,从玻璃小瓶中提取挥发性化合物。使用数据库连接工具包在 LabVIEW 中开发了测量和控制程序,将传感器数据发送到服务器,使用人工神经网络 (ANNs) 进行训练和分类。使用服务器而不是电子鼻的微处理器可以增加内存容量和分类器的计算能力,并允许外部用户执行数据分类。为了解决这个挑战,本文还提出了一个基于 Web 的框架(基于 RESTful Web 服务、异步 JavaScript 和 XML 以及 JavaScript 对象表示法),允许远程用户训练 ANN 并请求分类值,而无需考虑用户的位置和使用的设备类型。结果表明,所提出的原型可以以 94%的分类成功率区分所测量的样本(空白水、丙酮、甲苯、氨、甲醛、过氧化氢、乙醇、苯、二氯甲烷、乙酸、二甲苯和二甲基乙酰胺)。