Suppr超能文献

细胞区室化的被动降噪。

Passive Noise Filtering by Cellular Compartmentalization.

机构信息

Faculty of Sciences, Institute of Molecular Life Sciences, University of Zurich, 8006 Zurich, Switzerland; Systems Biology PhD program, Life Science Zurich Graduate School, ETH Zurich and University of Zurich, 8006 Zurich, Switzerland.

Faculty of Sciences, Institute of Molecular Life Sciences, University of Zurich, 8006 Zurich, Switzerland.

出版信息

Cell. 2016 Mar 10;164(6):1151-1161. doi: 10.1016/j.cell.2016.02.005.

Abstract

Chemical reactions contain an inherent element of randomness, which presents itself as noise that interferes with cellular processes and communication. Here we discuss the ability of the spatial partitioning of molecular systems to filter and, thus, remove noise, while preserving regulated and predictable differences between single living cells. In contrast to active noise filtering by network motifs, cellular compartmentalization is highly effective and easily scales to numerous systems without requiring a substantial usage of cellular energy. We will use passive noise filtering by the eukaryotic cell nucleus as an example of how this increases predictability of transcriptional output, with possible implications for the evolution of complex multicellularity.

摘要

化学反应中包含固有随机性元素,其表现为干扰细胞过程和通讯的噪声。在此,我们讨论了分子系统的空间分隔在过滤和去除噪声的同时,保持单个活细胞之间受调节且可预测的差异的能力。与网络基元的主动噪声过滤相反,细胞分隔具有高效性,并且可以轻松扩展到众多系统,而无需大量消耗细胞能量。我们将以真核细胞核的被动噪声过滤为例,说明其如何提高转录输出的可预测性,并可能对复杂多细胞生物的进化产生影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验