Ghusinga Khem Raj, Dennehy John J, Singh Abhyudai
Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716.
The Graduate Center, City University of New York, New York, NY 10016.
Proc Natl Acad Sci U S A. 2017 Jan 24;114(4):693-698. doi: 10.1073/pnas.1609012114. Epub 2017 Jan 9.
In the noisy cellular environment, gene products are subject to inherent random fluctuations in copy numbers over time. How cells ensure precision in the timing of key intracellular events despite such stochasticity is an intriguing fundamental problem. We formulate event timing as a first-passage time problem, where an event is triggered when the level of a protein crosses a critical threshold for the first time. Analytical calculations are performed for the first-passage time distribution in stochastic models of gene expression. Derivation of these formulas motivates an interesting question: Is there an optimal feedback strategy to regulate the synthesis of a protein to ensure that an event will occur at a precise time, while minimizing deviations or noise about the mean? Counterintuitively, results show that for a stable long-lived protein, the optimal strategy is to express the protein at a constant rate without any feedback regulation, and any form of feedback (positive, negative, or any combination of them) will always amplify noise in event timing. In contrast, a positive feedback mechanism provides the highest precision in timing for an unstable protein. These theoretical results explain recent experimental observations of single-cell lysis times in bacteriophage [Formula: see text] Here, lysis of an infected bacterial cell is orchestrated by the expression and accumulation of a stable [Formula: see text] protein up to a threshold, and precision in timing is achieved via feedforward rather than feedback control. Our results have broad implications for diverse cellular processes that rely on precise temporal triggering of events.
在嘈杂的细胞环境中,基因产物的拷贝数会随时间产生固有的随机波动。尽管存在这种随机性,细胞如何确保关键细胞内事件发生时间的精确性,是一个引人入胜的基本问题。我们将事件发生时间表述为首次通过时间问题,即当一种蛋白质的水平首次超过临界阈值时触发一个事件。对基因表达的随机模型中的首次通过时间分布进行了分析计算。这些公式的推导引发了一个有趣的问题:是否存在一种最优反馈策略来调节蛋白质的合成,以确保事件在精确的时间发生,同时将关于平均值的偏差或噪声降至最低?与直觉相反,结果表明,对于一种稳定的长寿蛋白质,最优策略是以恒定速率表达该蛋白质而无需任何反馈调节,任何形式的反馈(正反馈、负反馈或它们的任何组合)都会始终放大事件发生时间的噪声。相比之下对于不稳定蛋白质,正反馈机制在时间控制上提供了最高的精度。这些理论结果解释了最近关于噬菌体中单细胞裂解时间的实验观察结果[公式:见正文]。在这里,受感染细菌细胞的裂解是由一种稳定的[公式:见正文]蛋白质表达并积累至阈值来精心安排的,并且通过前馈而非反馈控制实现了时间上的精确性。我们的结果对依赖于事件精确时间触发的各种细胞过程具有广泛的意义。