Suppr超能文献

对呋喃糖溶液构象的深入研究:超越二态模型

Insights into furanose solution conformations: beyond the two-state model.

作者信息

Wang Xiaocong, Woods Robert J

机构信息

Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA.

出版信息

J Biomol NMR. 2016 Apr;64(4):291-305. doi: 10.1007/s10858-016-0028-y. Epub 2016 Mar 12.

Abstract

A two-state model is commonly used for interpreting ring conformations of furanoses based on NMR scalar (3) J-coupling constants, with the ring populating relatively narrow distributions in the North and the South of the pseudorotation itinerary. The validity of this simple approach has been questioned, and is examined here in detail employing molecular dynamics (MD) simulations with a new GLYCAM force field parameter set for furanoses. Theoretical (3) J-coupling constants derived from unrestrained MD simulations with the new furanose-specific parameters agreed with the experimental coupling constants to within 1 Hz on average. The results confirm that a two state model is a reasonable description for the ring conformation in the majority of methyl furanosides. However, in the case of methyl α-D-arabinofuranoside the ring populates a continuum of states from North to South via the eastern side of the pseudorotational itinerary. Two key properties are responsible for these differences. Firstly, East and West regions in β- and α-anomers, respectively, are destabilized by the absence of the anomeric effect. And, secondly, East or West conformations can be further destabilized by repulsive interactions among vicinal hydroxyl groups and ring oxygen atoms when the vicinal hydroxyl groups are in syn-configurations (such as in ribose and lyxose) more so than when in anti (arabinose, xylose).

摘要

基于核磁共振标量(3)J耦合常数,双态模型通常用于解释呋喃糖的环构象,在假旋转行程的北部和南部,环具有相对较窄的分布。这种简单方法的有效性受到了质疑,本文使用针对呋喃糖的新GLYCAM力场参数集进行分子动力学(MD)模拟对此进行了详细研究。使用新的呋喃糖特异性参数从无约束MD模拟中得出的理论(3)J耦合常数与实验耦合常数平均相差在1赫兹以内。结果证实,双态模型对于大多数甲基呋喃糖苷中的环构象是一种合理的描述。然而,对于甲基α-D-阿拉伯呋喃糖苷,环通过假旋转行程的东侧从北部到南部占据一系列连续的状态。有两个关键特性导致了这些差异。首先,β-和α-端基异构体中的东部和西部分别由于缺乏端基异构效应而不稳定。其次,当邻位羟基处于顺式构型(如核糖和来苏糖)时,邻位羟基与环氧原子之间的排斥相互作用比处于反式(阿拉伯糖、木糖)时更能使东部或西部构象进一步不稳定。

相似文献

1
Insights into furanose solution conformations: beyond the two-state model.
J Biomol NMR. 2016 Apr;64(4):291-305. doi: 10.1007/s10858-016-0028-y. Epub 2016 Mar 12.
2
Deciphering the conformational preferences of furanosides. A molecular dynamics study.
J Biomol Struct Dyn. 2020 Jul;38(11):3359-3370. doi: 10.1080/07391102.2019.1656670. Epub 2019 Aug 30.
4
Theoretical Investigations on the Conformation of the β-d-Arabinofuranoside Ring.
J Chem Theory Comput. 2011 Feb 8;7(2):420-32. doi: 10.1021/ct100450s. Epub 2010 Dec 30.
5
Analysis of Aldofuranosyl Rings: Unbiased Modeling of Conformational Equilibria and Dynamics in Solution.
Biochemistry. 2022 Feb 15;61(4):239-251. doi: 10.1021/acs.biochem.1c00630. Epub 2022 Feb 1.
9
CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses.
J Phys Chem B. 2010 Oct 14;114(40):12981-94. doi: 10.1021/jp105758h.
10
Tautomers of N-acetyl-d-allosamine: an NMR and computational chemistry study.
Org Biomol Chem. 2021 Sep 7;19(33):7190-7201. doi: 10.1039/d1ob01139a. Epub 2021 Aug 12.

引用本文的文献

1
Generating 3D Models of Carbohydrates with GLYCAM-Web.
bioRxiv. 2025 May 9:2025.05.08.652828. doi: 10.1101/2025.05.08.652828.
2
Characteristic H NMR spectra of β-d-ribofuranosides and ribonucleosides: factors driving furanose ring conformations.
RSC Adv. 2022 Oct 13;12(45):29223-29239. doi: 10.1039/d2ra04274f. eCollection 2022 Oct 11.
5
Side Chain Conformation and Its Influence on Glycosylation Selectivity in Hexo- and Higher Carbon Furanosides.
J Org Chem. 2022 Jan 7;87(1):316-339. doi: 10.1021/acs.joc.1c02374. Epub 2021 Dec 14.
6
Stereospecific Furanosylations Catalyzed by Bis-thiourea Hydrogen-Bond Donors.
J Am Chem Soc. 2020 Feb 26;142(8):4061-4069. doi: 10.1021/jacs.0c00335. Epub 2020 Feb 14.
8
Coupling between conformational dynamics and catalytic function at the active site of the lead-dependent ribozyme.
RNA. 2018 Nov;24(11):1542-1554. doi: 10.1261/rna.067579.118. Epub 2018 Aug 15.
9
Predicting the Structures of Glycans, Glycoproteins, and Their Complexes.
Chem Rev. 2018 Sep 12;118(17):8005-8024. doi: 10.1021/acs.chemrev.8b00032. Epub 2018 Aug 9.
10
Synthesis of glyceryl glycosides related to A-type prymnesin toxins.
Carbohydr Res. 2018 Jun 30;463:14-23. doi: 10.1016/j.carres.2018.04.008. Epub 2018 Apr 17.

本文引用的文献

2
Theoretical Investigations on the Conformation of the β-d-Arabinofuranoside Ring.
J Chem Theory Comput. 2011 Feb 8;7(2):420-32. doi: 10.1021/ct100450s. Epub 2010 Dec 30.
3
Crystal structure of β-d,l-allose.
Acta Crystallogr E Crystallogr Commun. 2015 Jan 31;71(Pt 2):o139. doi: 10.1107/S2056989015000353. eCollection 2015 Feb 1.
6
ff14ipq: A Self-Consistent Force Field for Condensed-Phase Simulations of Proteins.
J Chem Theory Comput. 2014 Oct 14;10(10):4515-4534. doi: 10.1021/ct500643c. Epub 2014 Sep 18.
7
β-d-Gulose.
Acta Crystallogr Sect E Struct Rep Online. 2014 Apr 16;70(Pt 5):o569. doi: 10.1107/S1600536814008046. eCollection 2014 May 1.
8
Benchmarking quantum chemical methods for the calculation of molecular dipole moments and polarizabilities.
J Phys Chem A. 2014 May 22;118(20):3678-87. doi: 10.1021/jp502475e. Epub 2014 May 9.
9
Comparison between DFT- and NMR-based conformational analysis of methyl galactofuranosides.
Carbohydr Res. 2013 Jun 7;374:103-14. doi: 10.1016/j.carres.2013.03.030. Epub 2013 Apr 6.
10
Conformational analysis of furanoside-containing mono- and oligosaccharides.
Chem Rev. 2013 Mar 13;113(3):1851-76. doi: 10.1021/cr300249c. Epub 2012 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验