Department of Chemistry, Memorial University of Newfoundland , St. John's, NL A1B 3X7, Canada.
J Phys Chem A. 2014 May 22;118(20):3678-87. doi: 10.1021/jp502475e. Epub 2014 May 9.
The calculation of molecular electric moments, polarizabilities, and electrostatic potentials is a widespread application of quantum chemistry. Although a range of wave function and density functional theory (DFT) methods have been applied in these calculations, combined with a variety of basis sets, there has not been a comprehensive evaluation of how accurate these methods are. To benchmark the accuracy of these methods, the dipole moments and polarizabilities of a set of 46 molecules were calculated using a broad set of quantum chemical methods and basis sets. Wave function methods Hartree-Fock (HF), second-order Møller-Plesset (MP2), and coupled cluster-singles and doubles (CCSD) were evaluated, along with the PBE, TPSS, TPSSh, PBE0, B3LYP, M06, and B2PLYP DFT functionals. The cc-pVDZ, cc-pVTZ, aug-cc-pVDZ, aug-cc-pVTZ, and Sadlej cc-pVTZ basis sets were tested. The aug-cc-pVDZ, Sadlej cc-pVTZ, and aug-cc-pVTZ basis sets all yield results with comparable accuracy, with the aug-cc-pVTZ calculations being the most accurate. CCSD, MP2, or hybrid DFT methods using the aug-cc-pVTZ basis set are all able to predict dipole moments with RMSD errors in the 0.12-0.13 D range and polarizabilities with RMSD errors in the 0.30-0.38 Å(3) range. Calculations using Hartree-Fock theory systematically overestimated dipole moments and underestimate polarizabilities. The pure DFT functionals included in this study (PBE and TPSS) slightly underestimate dipole moments and overestimate polarizability. Polarization anisotropy and implications for charge fitting are discussed.
分子电矩、极化率和静电势的计算是量子化学的广泛应用。尽管已经应用了一系列波函数和密度泛函理论(DFT)方法,并结合了各种基组,但对于这些方法的准确性还没有进行全面的评估。为了基准这些方法的准确性,使用广泛的量子化学方法和基组计算了 46 个分子的偶极矩和极化率。评估了波函数方法 Hartree-Fock(HF)、二阶 Møller-Plesset(MP2)和耦合簇单双(CCSD),以及 PBE、TPSS、TPSSh、PBE0、B3LYP、M06 和 B2PLYP DFT 函数。测试了 cc-pVDZ、cc-pVTZ、aug-cc-pVDZ、aug-cc-pVTZ 和 Sadlej cc-pVTZ 基组。aug-cc-pVDZ、Sadlej cc-pVTZ 和 aug-cc-pVTZ 基组的结果具有相当的准确性,其中 aug-cc-pVTZ 计算结果最为准确。使用 aug-cc-pVTZ 基组的 CCSD、MP2 或混合 DFT 方法都能够预测偶极矩,其均方根误差(RMSD)在 0.12-0.13 D 范围内,极化率的 RMSD 误差在 0.30-0.38 Å(3)范围内。Hartree-Fock 理论的计算系统地高估了偶极矩,低估了极化率。本研究中包含的纯 DFT 函数(PBE 和 TPSS)略低估了偶极矩,高估了极化率。讨论了极化各向异性和对电荷拟合的影响。