De Filippo Elisabetta, Namasivayam Vigneshwaran, Zappe Lukas, El-Tayeb Ali, Schiedel Anke C, Müller Christa E
Pharma Center Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
Purinergic Signal. 2016 Jun;12(2):313-29. doi: 10.1007/s11302-016-9506-7. Epub 2016 Mar 11.
The G protein-coupled A2A adenosine receptor represents an important drug target. Crystal structures and modeling studies indicated that three disulfide bonds are formed between ECL1 and ECL2 (I, Cys71(2.69)-Cys159(45.43); II, Cys74(3.22)-Cys146(45.30), and III, Cys77(3.25)-Cys166(45.50)). However, the A2BAR subtype appears to require only disulfide bond III for proper function. In this study, each of the three disulfide bonds in the A2AAR was disrupted by mutation of one of the cysteine residues to serine. The mutant receptors were stably expressed in Chinese hamster ovary cells and analyzed in cyclic adenosine monophosphate (cAMP) accumulation and radioligand binding studies using structurally diverse agonists: adenosine, NECA, CGS21680, and PSB-15826. Results were rationalized by molecular modeling. The observed effects were dependent on the investigated agonist. Loss of disulfide bond I led to a widening of the orthosteric binding pocket resulting in a strong reduction in the potency of adenosine, but not of NECA or 2-substituted nucleosides. Disruption of disulfide bond II led to a significant reduction in the agonists' efficacy indicating its importance for receptor activation. Disulfide bond III disruption reduced potency and affinity of the small adenosine agonists and NECA, but not of the larger 2-substituted agonists. While all the three disulfide bonds were essential for high potency or efficacy of adenosine, structural modification of the nucleoside could rescue affinity or efficacy at the mutant receptors. At present, it cannot be excluded that formation of the extracellular disulfide bonds in the A2AAR is dynamic. This might add another level of G protein-coupled receptor (GPCR) modulation, in particular for the cysteine-rich A2A and A2BARs.
G蛋白偶联的A2A腺苷受体是一个重要的药物靶点。晶体结构和建模研究表明,胞外环1(ECL1)和胞外环2(ECL2)之间形成了三个二硫键(I,半胱氨酸71(2.69)-半胱氨酸159(45.43);II,半胱氨酸74(3.22)-半胱氨酸146(45.30);III,半胱氨酸77(3.25)-半胱氨酸166(45.50))。然而,A2B腺苷受体亚型似乎仅需要二硫键III来实现正常功能。在本研究中,A2A腺苷受体中的三个二硫键中的每一个都通过将其中一个半胱氨酸残基突变为丝氨酸而被破坏。突变受体在中国仓鼠卵巢细胞中稳定表达,并在使用结构多样的激动剂(腺苷、NECA、CGS21680和PSB-15826)的环磷酸腺苷(cAMP)积累和放射性配体结合研究中进行分析。结果通过分子建模进行合理化解释。观察到的效应取决于所研究的激动剂。二硫键I的缺失导致正构结合口袋变宽,导致腺苷的效力大幅降低,但NECA或2-取代核苷的效力未降低。二硫键II的破坏导致激动剂的效力显著降低,表明其对受体激活的重要性。二硫键III的破坏降低了小腺苷激动剂和NECA的效力和亲和力,但对较大的2-取代激动剂没有影响。虽然所有三个二硫键对于腺苷的高效力或效力都是必不可少的,但核苷的结构修饰可以挽救突变受体的亲和力或效力。目前,不能排除A2A腺苷受体中细胞外二硫键的形成是动态的。这可能会增加G蛋白偶联受体(GPCR)调节的另一个层面,特别是对于富含半胱氨酸的A2A和A2B腺苷受体。