Higgins Steven A, Welsh Allana, Orellana Luis H, Konstantinidis Konstantinos T, Chee-Sanford Joanne C, Sanford Robert A, Schadt Christopher W, Löffler Frank E
Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA.
Department of Geology, University of Illinois, Urbana, Illinois, USA.
Appl Environ Microbiol. 2016 May 2;82(10):2919-2928. doi: 10.1128/AEM.00243-16. Print 2016 May 15.
Members of the Fungi convert nitrate (NO3 (-)) and nitrite (NO2 (-)) to gaseous nitrous oxide (N2O) (denitrification), but the fungal contributions to N loss from soil remain uncertain. Cultivation-based methodologies that include antibiotics to selectively assess fungal activities have limitations, and complementary molecular approaches to assign denitrification potential to fungi are desirable. Microcosms established with soils from two representative U.S. Midwest agricultural regions produced N2O from added NO3 (-) or NO2 (-) in the presence of antibiotics to inhibit bacteria. Cultivation efforts yielded 214 fungal isolates belonging to at least 15 distinct morphological groups, 151 of which produced N2O from NO2 (-) Novel PCR primers targeting the p450nor gene, which encodes the nitric oxide (NO) reductase responsible for N2O production in fungi, yielded 26 novel p450nor amplicons from DNA of 37 isolates and 23 amplicons from environmental DNA obtained from two agricultural soils. The sequences shared 54 to 98% amino acid identity with reference P450nor sequences within the phylum Ascomycota and expand the known fungal P450nor sequence diversity. p450nor was detected in all fungal isolates that produced N2O from NO2 (-), whereas nirK (encoding the NO-forming NO2 (-) reductase) was amplified in only 13 to 74% of the N2O-forming isolates using two separate nirK primer sets. Collectively, our findings demonstrate the value of p450nor-targeted PCR to complement existing approaches to assess the fungal contributions to denitrification and N2O formation.
A comprehensive understanding of the microbiota controlling soil N loss and greenhouse gas (N2O) emissions is crucial for sustainable agricultural practices and addressing climate change concerns. We report the design and application of a novel PCR primer set targeting fungal p450nor, a biomarker for fungal N2O production, and demonstrate the utility of the new approach to assess fungal denitrification potential in fungal isolates and agricultural soils. These new PCR primers may find application in a variety of biomes to assess the fungal contributions to N loss and N2O emissions.
真菌成员可将硝酸盐(NO3 (-))和亚硝酸盐(NO2 (-))转化为气态一氧化二氮(N2O)(反硝化作用),但真菌对土壤氮素损失的贡献仍不明确。基于培养的方法,包括使用抗生素选择性评估真菌活性,存在局限性,因此需要补充分子方法来确定真菌的反硝化潜力。用来自美国中西部两个代表性农业地区的土壤建立的微观世界,在添加抗生素以抑制细菌的情况下,从添加的NO3 (-) 或NO2 (-) 中产生了N2O。培养工作产生了214株真菌分离株,属于至少15个不同的形态学组,其中151株从NO2 (-) 中产生N2O。针对p450nor基因设计的新型PCR引物,该基因编码负责真菌中N2O产生的一氧化氮(NO)还原酶,从37株分离株的DNA中产生了26个新的p450nor扩增子,从两种农业土壤获得的环境DNA中产生了23个扩增子。这些序列与子囊菌门内的参考P450nor序列具有54%至98%的氨基酸同一性,并扩展了已知的真菌P450nor序列多样性。在所有从NO2 (-) 中产生N2O的真菌分离株中都检测到了p450nor,而使用两套不同的nirK引物,在仅13%至74%的产生N2O的分离株中扩增出了nirK(编码形成NO的NO2 (-) 还原酶)。总体而言,我们的研究结果证明了靶向p450nor的PCR在补充现有方法以评估真菌对反硝化作用和N2O形成的贡献方面的价值。
全面了解控制土壤氮素损失和温室气体(N2O)排放的微生物群对于可持续农业实践和应对气候变化问题至关重要。我们报告了一种针对真菌p450nor(真菌N2O产生的生物标志物)的新型PCR引物组的设计和应用,并证明了这种新方法在评估真菌分离株和农业土壤中真菌反硝化潜力方面的实用性。这些新的PCR引物可能在各种生物群落中得到应用,以评估真菌对氮素损失和N2O排放的贡献。