Department of Microbiology, University of Tennessee, Knoxville.
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge.
Genome Biol Evol. 2018 Sep 1;10(9):2474-2489. doi: 10.1093/gbe/evy187.
Fungi expressing P450nor, an unconventional nitric oxide (NO) reducing cytochrome P450, are considered significant contributors to environmental nitrous oxide (N2O) emissions. Despite extensive efforts, fungal contributions to N2O emissions remain uncertain. For example, the majority of N2O emitted from antibiotic-amended soil microcosms is attributed to fungal activity, yet axenic fungal cultures do not couple N-oxyanion respiration to growth and these fungi produce only minor quantities of N2O. To assist in reconciling these conflicting observations and produce a benchmark genomic analysis of fungal denitrifiers, genes underlying denitrification were examined in >700 fungal genomes. Of 167 p450nor-containing genomes identified, 0, 30, and 48 also harbored the denitrification genes narG, napA, or nirK, respectively. Compared with napA and nirK, p450nor was twice as abundant and exhibited 2-5-fold more gene duplications, losses, and transfers, indicating a disconnect between p450nor presence and denitrification potential. Furthermore, cooccurrence of p450nor with genes encoding NO-detoxifying flavohemoglobins (Spearman r = 0.87, p = 1.6e-10) confounds hypotheses regarding P450nor's primary role in NO detoxification. Instead, ancestral state reconstruction united P450nor with actinobacterial cytochrome P450s (CYP105) involved in secondary metabolism (SM) and 19 (11%) p450nor-containing genomic regions were predicted to be SM clusters. Another 40 (24%) genomes harbored genes nearby p450nor predicted to encode hallmark SM functions, providing additional contextual evidence linking p450nor to SM. These findings underscore the potential physiological implications of widespread p450nor gene transfer, support the undiscovered affiliation of p450nor with fungal SM, and challenge the hypothesis of p450nor's primary role in denitrification.
表达 P450nor 的真菌(一种非常规的一氧化氮(NO)还原细胞色素 P450)被认为是导致环境中氧化亚氮(N2O)排放的重要因素。尽管进行了广泛的研究,但真菌对 N2O 排放的贡献仍不确定。例如,从添加抗生素的土壤微宇宙中排放的大部分 N2O 归因于真菌的活动,但无菌真菌培养物不会将 N-亚硝酸盐呼吸与生长偶联,并且这些真菌只产生少量的 N2O。为了帮助调和这些相互矛盾的观察结果,并对真菌反硝化菌进行基准基因组分析,研究人员在超过 700 个真菌基因组中检查了反硝化作用的相关基因。在鉴定出的 167 个含有 p450nor 的基因组中,分别有 0、30 和 48 个基因组还含有反硝化基因 narG、napA 或 nirK。与 napA 和 nirK 相比,p450nor 的丰度高两倍,且基因重复、缺失和转移的倍数多 2-5 倍,这表明 p450nor 的存在与反硝化潜力之间存在脱节。此外,p450nor 与编码 NO 解毒黄素蛋白的基因共同出现(Spearman r = 0.87,p = 1.6e-10),这使得关于 P450nor 在 NO 解毒中的主要作用的假说变得复杂。相反,祖先状态重建将 P450nor 与参与次生代谢(SM)的放线菌细胞色素 P450(CYP105)联合在一起,并且预测 19 个(11%)含有 p450nor 的基因组区域是 SM 簇。另外 40 个(24%)基因组在 p450nor 附近含有预测编码标志性 SM 功能的基因,为将 p450nor 与 SM 联系起来提供了额外的上下文证据。这些发现强调了广泛的 p450nor 基因转移的潜在生理意义,支持了 p450nor 与真菌 SM 之间尚未发现的联系,并挑战了 p450nor 在反硝化作用中主要作用的假说。