Suppr超能文献

使用零模式波导探究核糖体的翻译动力学

Probing the Translation Dynamics of Ribosomes Using Zero-Mode Waveguides.

作者信息

Tsai Albert, Puglisi Joseph D, Uemura Sotaro

机构信息

Department of Applied Physics, Stanford University, Stanford, California, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA.

Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA; Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine, Stanford, California, USA.

出版信息

Prog Mol Biol Transl Sci. 2016;139:1-43. doi: 10.1016/bs.pmbts.2015.10.006. Epub 2015 Nov 2.

Abstract

In order to coordinate the complex biochemical and structural feat of converting triple-nucleotide codons into their corresponding amino acids, the ribosome must physically manipulate numerous macromolecules including the mRNA, tRNAs, and numerous translation factors. The ribosome choreographs binding, dissociation, physical movements, and structural rearrangements so that they synergistically harness the energy from biochemical processes, including numerous GTP hydrolysis steps and peptide bond formation. Due to the dynamic and complex nature of translation, the large cast of ligands involved, and the large number of possible configurations, tracking the global time evolution or dynamics of the ribosome complex in translation has proven to be challenging for bulk methods. Conventional single-molecule fluorescence experiments on the other hand require low concentrations of fluorescent ligands to reduce background noise. The significantly reduced bimolecular association rates under those conditions limit the number of steps that can be observed within the time window available to a fluorophore. The advent of zero-mode waveguide (ZMW) technology has allowed the study of translation at near-physiological concentrations of labeled ligands, moving single-molecule fluorescence microscopy beyond focused model systems into studying the global dynamics of translation in realistic setups. This chapter reviews the recent works using the ZMW technology to dissect the mechanism of translation initiation and elongation in prokaryotes, including complex processes such as translational stalling and frameshifting. Given the success of the technology, similarly complex biological processes could be studied in near-physiological conditions with the controllability of conventional in vitro experiments.

摘要

为了协调将三核苷酸密码子转化为其相应氨基酸这一复杂的生化和结构过程,核糖体必须实际操控众多大分子,包括信使核糖核酸(mRNA)、转运核糖核酸(tRNA)以及众多翻译因子。核糖体精心编排结合、解离、物理运动和结构重排,以便它们协同利用生化过程中的能量,包括众多鸟苷三磷酸(GTP)水解步骤和肽键形成。由于翻译过程具有动态性和复杂性,涉及的配体种类繁多,且可能的构型数量众多,对于大量方法而言,追踪核糖体复合物在翻译过程中的全局时间演变或动力学已被证明具有挑战性。另一方面,传统的单分子荧光实验需要低浓度的荧光配体以降低背景噪声。在这些条件下显著降低的双分子缔合速率限制了在荧光团可用时间窗口内可观察到的步骤数量。零模波导(ZMW)技术的出现使得能够在接近生理浓度的标记配体条件下研究翻译,将单分子荧光显微镜从聚焦的模型系统拓展到在实际环境中研究翻译的全局动力学。本章回顾了最近使用ZMW技术剖析原核生物翻译起始和延伸机制的研究工作,包括诸如翻译停滞和移码等复杂过程。鉴于该技术的成功,类似的复杂生物过程可以在接近生理条件下,利用传统体外实验的可控性进行研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验