Rogers Emily, Heitsch Christine
School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0765, USA.
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA.
Wiley Interdiscip Rev RNA. 2016 May;7(3):278-94. doi: 10.1002/wrna.1334. Epub 2016 Mar 11.
A widening gap exists between the best practices for RNA secondary structure prediction developed by computational researchers and the methods used in practice by experimentalists. Minimum free energy predictions, although broadly used, are outperformed by methods which sample from the Boltzmann distribution and data mine the results. In particular, moving beyond the single structure prediction paradigm yields substantial gains in accuracy. Furthermore, the largest improvements in accuracy and precision come from viewing secondary structures not at the base pair level but at lower granularity/higher abstraction. This suggests that random errors affecting precision and systematic ones affecting accuracy are both reduced by this 'fuzzier' view of secondary structures. Thus experimentalists who are willing to adopt a more rigorous, multilayered approach to secondary structure prediction by iterating through these levels of granularity will be much better able to capture fundamental aspects of RNA base pairing. WIREs RNA 2016, 7:278-294. doi: 10.1002/wrna.1334 For further resources related to this article, please visit the WIREs website.
计算研究人员开发的RNA二级结构预测最佳实践与实验人员实际使用的方法之间存在着不断扩大的差距。最小自由能预测虽然被广泛使用,但从玻尔兹曼分布中采样并对结果进行数据挖掘的方法表现更优。特别是,超越单一结构预测范式能在准确性上带来显著提升。此外,准确性和精确性的最大提高来自于不是在碱基对层面而是在更低粒度/更高抽象层面观察二级结构。这表明,通过这种对二级结构“更模糊”的视角,影响精确性的随机误差和影响准确性的系统误差都能得到减少。因此,愿意通过在这些粒度层面上反复迭代采用更严格、多层次方法进行二级结构预测的实验人员,将更有能力捕捉RNA碱基配对的基本特征。《WIREs RNA》2016年,7:278 - 294。doi: 10.1002/wrna.1334 有关本文的更多资源,请访问WIREs网站。