Bioinformatics Research Lab., School of Computing Science, Simon Fraser University, Surrey, BC, Canada.
IEEE/ACM Trans Comput Biol Bioinform. 2010 Oct-Dec;7(4):727-40. doi: 10.1109/TCBB.2008.97.
Ribonucleic acid (RNA), a single-stranded linear molecule, is essential to all biological systems. Different regions of the same RNA strand will fold together via base pair interactions to make intricate secondary and tertiary structures that guide crucial homeostatic processes in living organisms. Since the structure of RNA molecules is the key to their function, algorithms for the prediction of RNA structure are of great value. In this article, we demonstrate the usefulness of SARNA-Predict, an RNA secondary structure prediction algorithm based on Simulated Annealing (SA). A performance evaluation of SARNA-Predict in terms of prediction accuracy is made via comparison with eight state-of-the-art RNA prediction algorithms: mfold, Pseudoknot (pknotsRE), NUPACK, pknotsRG-mfe, Sfold, HotKnots, ILM, and STAR. These algorithms are from three different classes: heuristic, dynamic programming, and statistical sampling techniques. An evaluation for the performance of SARNA-Predict in terms of prediction accuracy was verified with native structures. Experiments on 33 individual known structures from eleven RNA classes (tRNA, viral RNA, antigenomic HDV, telomerase RNA, tmRNA, rRNA, RNaseP, 5S rRNA, Group I intron 23S rRNA, Group I intron 16S rRNA, and 16S rRNA) were performed. The results presented in this paper demonstrate that SARNA-Predict can out-perform other state-of-the-art algorithms in terms of prediction accuracy. Furthermore, there is substantial improvement of prediction accuracy by incorporating a more sophisticated thermodynamic model (efn2).
核糖核酸(RNA)是一种单链线性分子,对所有生物系统都是必不可少的。同一 RNA 链的不同区域通过碱基对相互作用折叠在一起,形成复杂的二级和三级结构,指导生物体内的关键动态平衡过程。由于 RNA 分子的结构是其功能的关键,因此预测 RNA 结构的算法具有重要价值。在本文中,我们展示了基于模拟退火(SA)的 RNA 二级结构预测算法 SARNA-Predict 的实用性。通过与八种最先进的 RNA 预测算法(mfold、Pseudoknot(pknotsRE)、NUPACK、pknotsRG-mfe、Sfold、HotKnots、ILM 和 STAR)进行比较,对 SARNA-Predict 在预测准确性方面的性能进行了评估。这些算法来自三个不同的类别:启发式、动态规划和统计抽样技术。通过与天然结构进行评估,验证了 SARNA-Predict 在预测准确性方面的性能。对来自 11 个 RNA 类别的 33 个已知结构(tRNA、病毒 RNA、抗原omic HDV、端粒酶 RNA、tmRNA、rRNA、RNaseP、5S rRNA、Group I 内含子 23S rRNA、Group I 内含子 16S rRNA 和 16S rRNA)进行了实验。本文中的结果表明,SARNA-Predict 在预测准确性方面可以优于其他最先进的算法。此外,通过采用更复杂的热力学模型(efn2),预测准确性有了实质性的提高。